Page 1 of 1

Failed copying input tensor

Posted: Wed Feb 03, 2021 3:09 am
by bubbatron

I don't see this one in the knowledge base. Any help would be appreciated.

Code: Select all

InternalError: Failed copying input tensor from /job:localhost/replica:0/task:0/device:CPU:0 to /job:localhost/replica:0/task:0/device:GPU:0 in order to run LogicalNot: Dst tensor is not initialized. [Op:LogicalNot]

02/02/2021 21:49:33 CRITICAL An unexpected crash has occurred. Crash report written to 'C:\Users\master\faceswap\crash_report.2021.02.02.214930539552.log'. You MUST provide this file if seeking assistance. Please verify you are running the latest version of faceswap before reporting

Process exited.
No summary data loaded. Nothing to save

I have the crash log and system info, but I don't see a way to attach them. Should I just put them in the text?


Re: Failed copying input tensor

Posted: Wed Feb 03, 2021 12:17 pm
by torzdf

Yes, you can copy and paste the crash report (ideally inside [code] tags).

This looks like an Out Of Memory issue, so you can try reducing batch size. I will need you log to provide any more insight though.


Re: Failed copying input tensor

Posted: Wed Feb 03, 2021 2:14 pm
by bubbatron

OK, thanks. Here is the first half of the crash report. System specs will also follow.

Code: Select all

02/02/2021 21:54:26 MainProcess     _training_0                    _base           _load_generator                DEBUG    input_size: 128, output_shapes: [(128, 128, 3)]
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Initializing TrainingDataGenerator: (model_input_size: 128, model_output_shapes: [(128, 128, 3)], coverage_ratio: 0.6875, augment_color: True, no_flip: False, warp_to_landmarks: False, alignments: ['aligned_faces', 'versions'], config: {'centering': 'face', 'coverage': 68.75, 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'convert_batchsize': 16, 'loss_function': 'ssim', 'mask_loss_function': 'mse', 'l2_reg_term': 100, 'eye_multiplier': 3, 'mouth_multiplier': 2, 'penalized_mask_loss': False, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'disable_warp': False, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Initialized TrainingDataGenerator
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   minibatch_ab                   DEBUG    Queue batches: (image_count: 517, batchsize: 14, side: 'a', do_shuffle: True, is_preview, True, is_timelapse: False)
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Initializing ImageAugmentation: (batchsize: 14, is_display: True, input_size: 128, output_shapes: [(128, 128, 3)], coverage_ratio: 0.6875, config: {'centering': 'face', 'coverage': 68.75, 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'convert_batchsize': 16, 'loss_function': 'ssim', 'mask_loss_function': 'mse', 'l2_reg_term': 100, 'eye_multiplier': 3, 'mouth_multiplier': 2, 'penalized_mask_loss': False, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'disable_warp': False, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Output sizes: [128]
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Initialized ImageAugmentation
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  __init__                       DEBUG    Initializing BackgroundGenerator: (target: '_run', thread_count: 2)
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  __init__                       DEBUG    Initialized BackgroundGenerator: '_run'
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread(s): '_run'
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread 1 of 2: '_run_0'
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   _minibatch                     DEBUG    Loading minibatch generator: (image_count: 517, side: 'a', do_shuffle: True)
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread 2 of 2: '_run_1'
02/02/2021 21:54:26 MainProcess     _run_1                         training_data   _minibatch                     DEBUG    Loading minibatch generator: (image_count: 517, side: 'a', do_shuffle: True)
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  start                          DEBUG    Started all threads '_run': 2
02/02/2021 21:54:26 MainProcess     _training_0                    _base           _set_preview_feed              DEBUG    Setting preview feed: (side: 'b')
02/02/2021 21:54:26 MainProcess     _training_0                    _base           _load_generator                DEBUG    Loading generator
02/02/2021 21:54:26 MainProcess     _training_0                    _base           _load_generator                DEBUG    input_size: 128, output_shapes: [(128, 128, 3)]
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Initializing TrainingDataGenerator: (model_input_size: 128, model_output_shapes: [(128, 128, 3)], coverage_ratio: 0.6875, augment_color: True, no_flip: False, warp_to_landmarks: False, alignments: ['aligned_faces', 'versions'], config: {'centering': 'face', 'coverage': 68.75, 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'convert_batchsize': 16, 'loss_function': 'ssim', 'mask_loss_function': 'mse', 'l2_reg_term': 100, 'eye_multiplier': 3, 'mouth_multiplier': 2, 'penalized_mask_loss': False, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'disable_warp': False, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Initialized TrainingDataGenerator
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   minibatch_ab                   DEBUG    Queue batches: (image_count: 723, batchsize: 14, side: 'b', do_shuffle: True, is_preview, True, is_timelapse: False)
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Initializing ImageAugmentation: (batchsize: 14, is_display: True, input_size: 128, output_shapes: [(128, 128, 3)], coverage_ratio: 0.6875, config: {'centering': 'face', 'coverage': 68.75, 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'convert_batchsize': 16, 'loss_function': 'ssim', 'mask_loss_function': 'mse', 'l2_reg_term': 100, 'eye_multiplier': 3, 'mouth_multiplier': 2, 'penalized_mask_loss': False, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'disable_warp': False, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Output sizes: [128]
02/02/2021 21:54:26 MainProcess     _training_0                    training_data   __init__                       DEBUG    Initialized ImageAugmentation
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  __init__                       DEBUG    Initializing BackgroundGenerator: (target: '_run', thread_count: 2)
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  __init__                       DEBUG    Initialized BackgroundGenerator: '_run'
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread(s): '_run'
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread 1 of 2: '_run_0'
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   _minibatch                     DEBUG    Loading minibatch generator: (image_count: 723, side: 'b', do_shuffle: True)
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread 2 of 2: '_run_1'
02/02/2021 21:54:26 MainProcess     _run_1                         training_data   _minibatch                     DEBUG    Loading minibatch generator: (image_count: 723, side: 'b', do_shuffle: True)
02/02/2021 21:54:26 MainProcess     _training_0                    multithreading  start                          DEBUG    Started all threads '_run': 2
02/02/2021 21:54:26 MainProcess     _training_0                    _base           _set_preview_feed              DEBUG    Set preview feed. Batchsize: 14
02/02/2021 21:54:26 MainProcess     _training_0                    _base           __init__                       DEBUG    Initialized _Feeder:
02/02/2021 21:54:26 MainProcess     _training_0                    _base           _set_tensorboard               DEBUG    Enabling TensorBoard Logging
02/02/2021 21:54:26 MainProcess     _training_0                    _base           _set_tensorboard               DEBUG    Setting up TensorBoard Logging
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   _crop_to_center                DEBUG    caching crop size: (centering: 'face', full size: 512, crop size: 384)
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   _crop_to_center                DEBUG    caching crop size: (centering: 'face', full size: 512, crop size: 384)
02/02/2021 21:54:26 MainProcess     _run_1                         training_data   _crop_to_center                DEBUG    caching crop size: (centering: 'face', full size: 512, crop size: 384)
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   _crop_to_center                DEBUG    caching crop size: (centering: 'face', full size: 512, crop size: 384)
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   initialize                     DEBUG    Initializing constants. training_size: 384
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   initialize                     DEBUG    Initialized constants: {'clahe_base_contrast': 3, 'tgt_slices': slice(60, 324, None), 'warp_mapx': '[[[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]]', 'warp_mapy': '[[[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]]', 'warp_pad': 160, 'warp_slices': slice(16, -16, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [381. 381. 381. ... 381. 381. 381.]\n  [382. 382. 382. ... 382. 382. 382.]\n  [383. 383. 383. ... 383. 383. 383.]]\n\n [[  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  ...\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]]]'}
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   initialize                     DEBUG    Initializing constants. training_size: 384
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   initialize                     DEBUG    Initialized constants: {'clahe_base_contrast': 3, 'tgt_slices': slice(60, 324, None), 'warp_mapx': '[[[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]]', 'warp_mapy': '[[[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]]', 'warp_pad': 160, 'warp_slices': slice(16, -16, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [381. 381. 381. ... 381. 381. 381.]\n  [382. 382. 382. ... 382. 382. 382.]\n  [383. 383. 383. ... 383. 383. 383.]]\n\n [[  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  ...\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]]]'}
02/02/2021 21:54:26 MainProcess     _run_1                         training_data   initialize                     DEBUG    Initializing constants. training_size: 384
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   initialize                     DEBUG    Initializing constants. training_size: 384
02/02/2021 21:54:26 MainProcess     _run_0                         training_data   initialize                     DEBUG    Initializing constants. training_size: 384
02/02/2021 21:54:26 MainProcess     _run_1                         training_data   initialize                     DEBUG    Initializing constants. training_size: 384
02/02/2021 21:54:27 MainProcess     _run_1                         training_data   initialize                     DEBUG    Initialized constants: {'clahe_base_contrast': 3, 'tgt_slices': slice(60, 324, None), 'warp_mapx': '[[[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]]', 'warp_mapy': '[[[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]]', 'warp_pad': 160, 'warp_slices': slice(16, -16, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [381. 381. 381. ... 381. 381. 381.]\n  [382. 382. 382. ... 382. 382. 382.]\n  [383. 383. 383. ... 383. 383. 383.]]\n\n [[  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  ...\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]]]'}
02/02/2021 21:54:27 MainProcess     _run_1                         training_data   initialize                     DEBUG    Initialized constants: {'clahe_base_contrast': 3, 'tgt_slices': slice(60, 324, None), 'warp_mapx': '[[[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]]', 'warp_mapy': '[[[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]]', 'warp_pad': 160, 'warp_slices': slice(16, -16, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [381. 381. 381. ... 381. 381. 381.]\n  [382. 382. 382. ... 382. 382. 382.]\n  [383. 383. 383. ... 383. 383. 383.]]\n\n [[  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  ...\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]]]'}
02/02/2021 21:54:27 MainProcess     _run_0                         training_data   initialize                     DEBUG    Initialized constants: {'clahe_base_contrast': 3, 'tgt_slices': slice(60, 324, None), 'warp_mapx': '[[[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]]', 'warp_mapy': '[[[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]]', 'warp_pad': 160, 'warp_slices': slice(16, -16, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [381. 381. 381. ... 381. 381. 381.]\n  [382. 382. 382. ... 382. 382. 382.]\n  [383. 383. 383. ... 383. 383. 383.]]\n\n [[  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  ...\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]]]'}


Re: Failed copying input tensor

Posted: Wed Feb 03, 2021 2:14 pm
by bubbatron

This is the rest of the crash report.

Code: Select all

02/02/2021 21:54:27 MainProcess     _run_0                         training_data   initialize                     DEBUG    Initialized constants: {'clahe_base_contrast': 3, 'tgt_slices': slice(60, 324, None), 'warp_mapx': '[[[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]]', 'warp_mapy': '[[[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]]', 'warp_pad': 160, 'warp_slices': slice(16, -16, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [381. 381. 381. ... 381. 381. 381.]\n  [382. 382. 382. ... 382. 382. 382.]\n  [383. 383. 383. ... 383. 383. 383.]]\n\n [[  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  ...\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]]]'}
02/02/2021 21:54:27 MainProcess     _training_0                    _base           _set_tensorboard               VERBOSE  Enabled TensorBoard Logging
02/02/2021 21:54:27 MainProcess     _training_0                    _base           __init__                       DEBUG    Initializing _Samples: model: '<plugins.train.model.villain.Model object at 0x00000203ED256A00>', coverage_ratio: 0.6875)
02/02/2021 21:54:27 MainProcess     _training_0                    _base           __init__                       DEBUG    Initialized _Samples
02/02/2021 21:54:27 MainProcess     _training_0                    _base           __init__                       DEBUG    Initializing _Timelapse: model: <plugins.train.model.villain.Model object at 0x00000203ED256A00>, coverage_ratio: 0.6875, image_count: 14, feeder: '<plugins.train.trainer._base._Feeder object at 0x0000020403AC2B50>', image_paths: 2)
02/02/2021 21:54:27 MainProcess     _training_0                    _base           __init__                       DEBUG    Initializing _Samples: model: '<plugins.train.model.villain.Model object at 0x00000203ED256A00>', coverage_ratio: 0.6875)
02/02/2021 21:54:27 MainProcess     _training_0                    _base           __init__                       DEBUG    Initialized _Samples
02/02/2021 21:54:27 MainProcess     _training_0                    _base           __init__                       DEBUG    Initialized _Timelapse
02/02/2021 21:54:27 MainProcess     _training_0                    _base           __init__                       DEBUG    Initialized Trainer
02/02/2021 21:54:27 MainProcess     _training_0                    train           _load_trainer                  DEBUG    Loaded Trainer
02/02/2021 21:54:27 MainProcess     _training_0                    train           _run_training_cycle            DEBUG    Running Training Cycle
02/02/2021 21:54:28 MainProcess     _training_0                    ag_logging      warn                           DEBUG    AutoGraph could not transform <bound method Logger.isEnabledFor of <FaceswapLogger lib.model.losses_tf (DEBUG)>> and will run it as-is.\nPlease report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\nCause: module 'gast' has no attribute 'Index'\nTo silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
02/02/2021 21:54:28 MainProcess     _training_0                    ag_logging      warn                           DEBUG    AutoGraph could not transform <bound method Logger.findCaller of <FaceswapLogger lib.model.losses_tf (DEBUG)>> and will run it as-is.\nPlease report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\nCause: module 'gast' has no attribute 'Index'\nTo silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
02/02/2021 21:54:28 MainProcess     _training_0                    ag_logging      warn                           DEBUG    AutoGraph could not transform <bound method Logger.makeRecord of <FaceswapLogger lib.model.losses_tf (DEBUG)>> and will run it as-is.\nPlease report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\nCause: module 'gast' has no attribute 'Index'\nTo silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
02/02/2021 21:54:29 MainProcess     _training_0                    ag_logging      warn                           DEBUG    AutoGraph could not transform <bound method FaceswapFormatter.format of <lib.logger.FaceswapFormatter object at 0x00000203E25B7F70>> and will run it as-is.\nPlease report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\nCause: module 'gast' has no attribute 'Index'\nTo silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
02/02/2021 21:54:28 MainProcess     _training_0                    api             converted_call                 DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A2F85B0>, weight: 1.0, mask_channel: -1)
02/02/2021 21:54:29 MainProcess     _training_0                    ag_logging      warn                           DEBUG    AutoGraph could not transform <bound method LossWrapper._apply_mask of <class 'lib.model.losses_tf.LossWrapper'>> and will run it as-is.\nPlease report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\nCause: module 'gast' has no attribute 'Index'\nTo silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    No mask to apply
02/02/2021 21:54:29 MainProcess     _training_0                    ag_logging      warn                           DEBUG    AutoGraph could not transform <bound method DSSIMObjective.call of <lib.model.losses_tf.DSSIMObjective object at 0x00000203ED2E6D00>> and will run it as-is.\nPlease report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\nCause: module 'gast' has no attribute 'Index'\nTo silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A30DE50>, weight: 1.0, mask_channel: -1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    No mask to apply
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A3150D0>, weight: 3.0, mask_channel: -1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    No mask to apply
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A324340>, weight: 1.0, mask_channel: 1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    Applying mask from channel 1
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A324B50>, weight: 2.0, mask_channel: -1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    No mask to apply
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A328370>, weight: 1.0, mask_channel: 2)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    Applying mask from channel 2
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A328B50>, weight: 1.0, mask_channel: -1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    No mask to apply
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A32E370>, weight: 1.0, mask_channel: -1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    No mask to apply
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A32E9D0>, weight: 3.0, mask_channel: -1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    No mask to apply
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A3343D0>, weight: 1.0, mask_channel: 1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    Applying mask from channel 1
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A334B80>, weight: 2.0, mask_channel: -1)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    No mask to apply
02/02/2021 21:54:29 MainProcess     _training_0                    tmpeqpyer9_     if_body                        DEBUG    Processing loss function: (func: <tensorflow.python.keras.engine.compile_utils.LossesContainer object at 0x000002038A33C3A0>, weight: 1.0, mask_channel: 2)
02/02/2021 21:54:29 MainProcess     _training_0                    losses_tf       _apply_mask                    DEBUG    Applying mask from channel 2
02/02/2021 21:54:41 MainProcess     _training_0                    multithreading  run                            DEBUG    Error in thread (_training_0): in user code:\n\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:806 train_function  *\n        return step_function(self, iterator)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:796 step_function  **\n        outputs = model.distribute_strategy.run(run_step, args=(data,))\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1211 run\n        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2585 call_for_each_replica\n        return self._call_for_each_replica(fn, args, kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2945 _call_for_each_replica\n        return fn(*args, **kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:789 run_step  **\n        outputs = model.train_step(data)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:756 train_step\n        _minimize(self.distribute_strategy, tape, self.optimizer, loss,\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:2743 _minimize\n        optimizer.apply_gradients(\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\optimizer_v2\optimizer_v2.py:519 apply_gradients\n        self._create_all_weights(var_list)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\optimizer_v2\optimizer_v2.py:704 _create_all_weights\n        self._create_slots(var_list)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\optimizer_v2\adam.py:129 _create_slots\n        self.add_slot(var, 'v')\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\optimizer_v2\optimizer_v2.py:760 add_slot\n        weight = tf_variables.Variable(\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:262 __call__\n        return cls._variable_v2_call(*args, **kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:244 _variable_v2_call\n        return previous_getter(\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:67 getter\n        return captured_getter(captured_previous, **kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2857 creator\n        return next_creator(**kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:67 getter\n        return captured_getter(captured_previous, **kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2857 creator\n        return next_creator(**kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:67 getter\n        return captured_getter(captured_previous, **kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2857 creator\n        return next_creator(**kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:67 getter\n        return captured_getter(captured_previous, **kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\def_function.py:683 variable_capturing_scope\n        v = UnliftedInitializerVariable(\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:264 __call__\n        return super(VariableMetaclass, cls).__call__(*args, **kwargs)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\def_function.py:237 __init__\n        super(UnliftedInitializerVariable, self).__init__(\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py:1879 __init__\n        handle = _variable_handle_from_shape_and_dtype(\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py:175 _variable_handle_from_shape_and_dtype\n        math_ops.logical_not(exists), [exists], name="EagerVariableNameReuse")\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\gen_math_ops.py:5463 logical_not\n        _ops.raise_from_not_ok_status(e, name)\n    C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\framework\ops.py:6843 raise_from_not_ok_status\n        six.raise_from(core._status_to_exception(e.code, message), None)\n    <string>:3 raise_from\n        \n\n    InternalError: Failed copying input tensor from /job:localhost/replica:0/task:0/device:CPU:0 to /job:localhost/replica:0/task:0/device:GPU:0 in order to run LogicalNot: Dst tensor is not initialized. [Op:LogicalNot]\n
02/02/2021 21:54:42 MainProcess     MainThread                     train           _monitor                       DEBUG    Thread error detected
02/02/2021 21:54:42 MainProcess     MainThread                     train           _monitor                       DEBUG    Closed Monitor
02/02/2021 21:54:42 MainProcess     MainThread                     train           _end_thread                    DEBUG    Ending Training thread
02/02/2021 21:54:42 MainProcess     MainThread                     train           _end_thread                    CRITICAL Error caught! Exiting...
02/02/2021 21:54:42 MainProcess     MainThread                     multithreading  join                           DEBUG    Joining Threads: '_training'
02/02/2021 21:54:42 MainProcess     MainThread                     multithreading  join                           DEBUG    Joining Thread: '_training_0'
02/02/2021 21:54:42 MainProcess     MainThread                     multithreading  join                           ERROR    Caught exception in thread: '_training_0'
Traceback (most recent call last):
  File "C:\Users\master\faceswap\lib\cli\launcher.py", line 182, in execute_script
    process.process()
  File "C:\Users\master\faceswap\scripts\train.py", line 170, in process
    self._end_thread(thread, err)
  File "C:\Users\master\faceswap\scripts\train.py", line 210, in _end_thread
    thread.join()
  File "C:\Users\master\faceswap\lib\multithreading.py", line 121, in join
    raise thread.err[1].with_traceback(thread.err[2])
  File "C:\Users\master\faceswap\lib\multithreading.py", line 37, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\master\faceswap\scripts\train.py", line 232, in _training
    raise err
  File "C:\Users\master\faceswap\scripts\train.py", line 222, in _training
    self._run_training_cycle(model, trainer)
  File "C:\Users\master\faceswap\scripts\train.py", line 302, in _run_training_cycle
    trainer.train_one_step(viewer, timelapse)
  File "C:\Users\master\faceswap\plugins\train\trainer\_base.py", line 238, in train_one_step
    loss = self._model.model.train_on_batch(model_inputs, y=model_targets)
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py", line 1695, in train_on_batch
    logs = train_function(iterator)
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\def_function.py", line 780, in __call__
    result = self._call(*args, **kwds)
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\def_function.py", line 823, in _call
    self._initialize(args, kwds, add_initializers_to=initializers)
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\def_function.py", line 696, in _initialize
    self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\function.py", line 2855, in _get_concrete_function_internal_garbage_collected
    graph_function, _, _ = self._maybe_define_function(args, kwargs)
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\function.py", line 3213, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\function.py", line 3065, in _create_graph_function
    func_graph_module.func_graph_from_py_func(
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\framework\func_graph.py", line 986, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\def_function.py", line 600, in wrapped_fn
    return weak_wrapped_fn().__wrapped__(*args, **kwds)
  File "C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\framework\func_graph.py", line 973, in wrapper
    raise e.ag_error_metadata.to_exception(e)
tensorflow.python.framework.errors_impl.InternalError: in user code:

C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:806 train_function  *
    return step_function(self, iterator)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:796 step_function  **
    outputs = model.distribute_strategy.run(run_step, args=(data,))
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1211 run
    return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2585 call_for_each_replica
    return self._call_for_each_replica(fn, args, kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2945 _call_for_each_replica
    return fn(*args, **kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:789 run_step  **
    outputs = model.train_step(data)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:756 train_step
    _minimize(self.distribute_strategy, tape, self.optimizer, loss,
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\engine\training.py:2743 _minimize
    optimizer.apply_gradients(
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\optimizer_v2\optimizer_v2.py:519 apply_gradients
    self._create_all_weights(var_list)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\optimizer_v2\optimizer_v2.py:704 _create_all_weights
    self._create_slots(var_list)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\optimizer_v2\adam.py:129 _create_slots
    self.add_slot(var, 'v')
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\keras\optimizer_v2\optimizer_v2.py:760 add_slot
    weight = tf_variables.Variable(
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:262 __call__
    return cls._variable_v2_call(*args, **kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:244 _variable_v2_call
    return previous_getter(
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:67 getter
    return captured_getter(captured_previous, **kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2857 creator
    return next_creator(**kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:67 getter
    return captured_getter(captured_previous, **kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2857 creator
    return next_creator(**kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:67 getter
    return captured_getter(captured_previous, **kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2857 creator
    return next_creator(**kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:67 getter
    return captured_getter(captured_previous, **kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\def_function.py:683 variable_capturing_scope
    v = UnliftedInitializerVariable(
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\variables.py:264 __call__
    return super(VariableMetaclass, cls).__call__(*args, **kwargs)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\eager\def_function.py:237 __init__
    super(UnliftedInitializerVariable, self).__init__(
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py:1879 __init__
    handle = _variable_handle_from_shape_and_dtype(
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py:175 _variable_handle_from_shape_and_dtype
    math_ops.logical_not(exists), [exists], name="EagerVariableNameReuse")
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\ops\gen_math_ops.py:5463 logical_not
    _ops.raise_from_not_ok_status(e, name)
C:\Users\master\MiniConda3\envs\faceswap\lib\site-packages\tensorflow\python\framework\ops.py:6843 raise_from_not_ok_status
    six.raise_from(core._status_to_exception(e.code, message), None)
<string>:3 raise_from
    

InternalError: Failed copying input tensor from /job:localhost/replica:0/task:0/device:CPU:0 to /job:localhost/replica:0/task:0/device:GPU:0 in order to run LogicalNot: Dst tensor is not initialized. [Op:LogicalNot]


============ System Information ============
encoding:            cp1252
git_branch:          master
git_commits:         27a7adb Update README.md. 0941d6d realface model - Bugfix resblock
gpu_cuda:            No global version found. Check Conda packages for Conda Cuda
gpu_cudnn:           No global version found. Check Conda packages for Conda cuDNN
gpu_devices:         GPU_0: GeForce GTX 965M
gpu_devices_active:  GPU_0
gpu_driver:          461.40
gpu_vram:            GPU_0: 2048MB
os_machine:          AMD64
os_platform:         Windows-10-10.0.19041-SP0
os_release:          10
py_command:          C:\Users\master\faceswap\faceswap.py train -A F:/Common/Brian/National Treasure Trailer/Deepfake training 1 James Roday 2014 -ala F:/Common/Brian/National Treasure Trailer/Deepfake training 1 James Roday 2014/alignments.fsa -B F:/Common/Brian/National Treasure Trailer/Deepfake training 2 Nicolas Cage 2004 -alb F:/Common/Brian/National Treasure Trailer/Deepfake training 2 Nicolas Cage 2004/alignments.fsa -m F:/Common/Brian/National Treasure Trailer/Training -t villain -bs 16 -it 1000000 -s 250 -ss 25000 -ps 100 -L INFO -gui
py_conda_version:    conda 4.9.2
py_implementation:   CPython
py_version:          3.8.5
py_virtual_env:      True
sys_cores:           8
sys_processor:       Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
sys_ram:             Total: 16333MB, Available: 8402MB, Used: 7930MB, Free: 8402MB

=============== Pip Packages ===============
absl-py @ file:///tmp/build/80754af9/absl-py_1607439979954/work
aiohttp @ file:///C:/ci/aiohttp_1607109697839/work
astunparse==1.6.3
async-timeout==3.0.1
attrs @ file:///tmp/build/80754af9/attrs_1604765588209/work
blinker==1.4
brotlipy==0.7.0
cachetools @ file:///tmp/build/80754af9/cachetools_1611600262290/work
certifi==2020.12.5
cffi @ file:///C:/ci/cffi_1606255208697/work
chardet @ file:///C:/ci/chardet_1605303225733/work
click @ file:///home/linux1/recipes/ci/click_1610990599742/work
cryptography==2.9.2
cycler==0.10.0
fastcluster==1.1.26
ffmpy==0.2.3
gast @ file:///tmp/build/80754af9/gast_1597433534803/work
google-auth @ file:///tmp/build/80754af9/google-auth_1607969906642/work
google-auth-oauthlib @ file:///tmp/build/80754af9/google-auth-oauthlib_1603929124518/work
google-pasta==0.2.0
grpcio @ file:///C:/ci/grpcio_1597406462198/work
h5py==2.10.0
idna @ file:///home/linux1/recipes/ci/idna_1610986105248/work
imageio @ file:///tmp/build/80754af9/imageio_1594161405741/work
imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1609799311556/work
importlib-metadata @ file:///tmp/build/80754af9/importlib-metadata_1602276842396/work
joblib @ file:///tmp/build/80754af9/joblib_1607970656719/work
Keras-Applications @ file:///tmp/build/80754af9/keras-applications_1594366238411/work
Keras-Preprocessing==1.1.0
kiwisolver @ file:///C:/ci/kiwisolver_1604014703538/work
Markdown @ file:///C:/ci/markdown_1605111189761/work
matplotlib @ file:///C:/ci/matplotlib-base_1592837548929/work
mkl-fft==1.2.0
mkl-random==1.1.1
mkl-service==2.3.0
multidict @ file:///C:/ci/multidict_1600456481656/work
numpy @ file:///C:/ci/numpy_and_numpy_base_1603466732592/work
nvidia-ml-py3 @ git+https://github.com/deepfakes/nvidia-ml-py3.git@6fc29ac84b32bad877f078cb4a777c1548a00bf6
oauthlib==3.1.0
olefile==0.46
opencv-python==4.5.1.48
opt-einsum==3.1.0
pathlib==1.0.1
Pillow @ file:///C:/ci/pillow_1609786840597/work
protobuf==3.13.0
psutil @ file:///C:/ci/psutil_1598370330503/work
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycparser @ file:///tmp/build/80754af9/pycparser_1594388511720/work
PyJWT @ file:///C:/ci/pyjwt_1610893382614/work
pyOpenSSL @ file:///tmp/build/80754af9/pyopenssl_1608057966937/work
pyparsing @ file:///home/linux1/recipes/ci/pyparsing_1610983426697/work
pyreadline==2.1
PySocks @ file:///C:/ci/pysocks_1605287845585/work
python-dateutil @ file:///home/ktietz/src/ci/python-dateutil_1611928101742/work
pywin32==227
requests @ file:///tmp/build/80754af9/requests_1608241421344/work
requests-oauthlib==1.3.0
rsa @ file:///tmp/build/80754af9/rsa_1610483308194/work
scikit-learn @ file:///C:/ci/scikit-learn_1598377018496/work
scipy @ file:///C:/ci/scipy_1604596260408/work
sip==4.19.13
six @ file:///C:/ci/six_1605187374963/work
tensorboard @ file:///home/builder/ktietz/conda/conda-bld/tensorboard_1604313476433/work/tmp_pip_dir
tensorboard-plugin-wit==1.6.0
tensorflow==2.3.0
tensorflow-estimator @ file:///tmp/build/80754af9/tensorflow-estimator_1599136169057/work/whl_temp/tensorflow_estimator-2.3.0-py2.py3-none-any.whl
termcolor==1.1.0
threadpoolctl @ file:///tmp/tmp9twdgx9k/threadpoolctl-2.1.0-py3-none-any.whl
tornado @ file:///C:/ci/tornado_1606942392901/work
tqdm @ file:///tmp/build/80754af9/tqdm_1611857934208/work
typing-extensions @ file:///tmp/build/80754af9/typing_extensions_1611751222202/work
urllib3 @ file:///tmp/build/80754af9/urllib3_1611694770489/work
Werkzeug @ file:///home/ktietz/src/ci/werkzeug_1611932622770/work
win-inet-pton @ file:///C:/ci/win_inet_pton_1605306167264/work
wincertstore==0.2
wrapt==1.12.1
yarl @ file:///C:/ci/yarl_1598045274898/work
zipp @ file:///tmp/build/80754af9/zipp_1604001098328/work

============== Conda Packages ==============
# packages in environment at C:\Users\master\MiniConda3\envs\faceswap:
#
# Name                    Version                   Build  Channel
_tflow_select             2.3.0                       gpu  
absl-py 0.11.0 pyhd3eb1b0_1
aiohttp 3.7.3 py38h2bbff1b_1
astunparse 1.6.3 py_0
async-timeout 3.0.1 py38haa95532_0
attrs 20.3.0 pyhd3eb1b0_0
blas 1.0 mkl
blinker 1.4 py38haa95532_0
brotlipy 0.7.0 py38h2bbff1b_1003
ca-certificates 2021.1.19 haa95532_0
cachetools 4.2.1 pyhd3eb1b0_0
certifi 2020.12.5 py38haa95532_0
cffi 1.14.4 py38hcd4344a_0
chardet 3.0.4 py38haa95532_1003
click 7.1.2 pyhd3eb1b0_0
cryptography 2.9.2 py38h7a1dbc1_0
cudatoolkit 10.1.243 h74a9793_0
cudnn 7.6.5 cuda10.1_0
cycler 0.10.0 py38_0
fastcluster 1.1.26 py38h251f6bf_2 conda-forge ffmpeg 4.3.1 ha925a31_0 conda-forge ffmpy 0.2.3 pypi_0 pypi freetype 2.10.4 hd328e21_0
gast 0.4.0 py_0
git 2.23.0 h6bb4b03_0
google-auth 1.24.0 pyhd3eb1b0_0
google-auth-oauthlib 0.4.2 pyhd3eb1b0_2
google-pasta 0.2.0 py_0
grpcio 1.31.0 py38he7da953_0
h5py 2.10.0 py38h5e291fa_0
hdf5 1.10.4 h7ebc959_0
icc_rt 2019.0.0 h0cc432a_1
icu 58.2 ha925a31_3
idna 2.10 pyhd3eb1b0_0
imageio 2.9.0 py_0
imageio-ffmpeg 0.4.3 pyhd8ed1ab_0 conda-forge importlib-metadata 2.0.0 py_1
intel-openmp 2020.2 254
joblib 1.0.0 pyhd3eb1b0_0
jpeg 9b hb83a4c4_2
keras-applications 1.0.8 py_1
keras-preprocessing 1.1.0 py_1
kiwisolver 1.3.0 py38hd77b12b_0
libpng 1.6.37 h2a8f88b_0
libprotobuf 3.13.0.1 h200bbdf_0
libtiff 4.1.0 h56a325e_1
lz4-c 1.9.3 h2bbff1b_0
markdown 3.3.3 py38haa95532_0
matplotlib 3.2.2 0
matplotlib-base 3.2.2 py38h64f37c6_0
mkl 2020.2 256
mkl-service 2.3.0 py38h196d8e1_0
mkl_fft 1.2.0 py38h45dec08_0
mkl_random 1.1.1 py38h47e9c7a_0
multidict 4.7.6 py38he774522_1
numpy 1.19.2 py38hadc3359_0
numpy-base 1.19.2 py38ha3acd2a_0
nvidia-ml-py3 7.352.1 pypi_0 pypi oauthlib 3.1.0 py_0
olefile 0.46 py_0
opencv-python 4.5.1.48 pypi_0 pypi openssl 1.1.1i h2bbff1b_0
opt_einsum 3.1.0 py_0
pathlib 1.0.1 py_1
pillow 8.1.0 py38h4fa10fc_0
pip 20.3.3 py38haa95532_0
protobuf 3.13.0.1 py38ha925a31_1
psutil 5.7.2 py38he774522_0
pyasn1 0.4.8 py_0
pyasn1-modules 0.2.8 py_0
pycparser 2.20 py_2
pyjwt 2.0.1 py38haa95532_0
pyopenssl 20.0.1 pyhd3eb1b0_1
pyparsing 2.4.7 pyhd3eb1b0_0
pyqt 5.9.2 py38ha925a31_4
pyreadline 2.1 py38_1
pysocks 1.7.1 py38haa95532_0
python 3.8.5 h5fd99cc_1
python-dateutil 2.8.1 pyhd3eb1b0_0
python_abi 3.8 1_cp38 conda-forge pywin32 227 py38he774522_1
qt 5.9.7 vc14h73c81de_0
requests 2.25.1 pyhd3eb1b0_0
requests-oauthlib 1.3.0 py_0
rsa 4.7 pyhd3eb1b0_1
scikit-learn 0.23.2 py38h47e9c7a_0
scipy 1.5.2 py38h14eb087_0
setuptools 52.0.0 py38haa95532_0
sip 4.19.13 py38ha925a31_0
six 1.15.0 py38haa95532_0
sqlite 3.33.0 h2a8f88b_0
tensorboard 2.3.0 pyh4dce500_0
tensorboard-plugin-wit 1.6.0 py_0
tensorflow 2.3.0 mkl_py38h1fcfbd6_0
tensorflow-base 2.3.0 gpu_py38h7339f5a_0
tensorflow-estimator 2.3.0 pyheb71bc4_0
tensorflow-gpu 2.3.0 he13fc11_0
termcolor 1.1.0 py38_1
threadpoolctl 2.1.0 pyh5ca1d4c_0
tk 8.6.10 he774522_0
tornado 6.1 py38h2bbff1b_0
tqdm 4.56.0 pyhd3eb1b0_0
typing-extensions 3.7.4.3 hd3eb1b0_0
typing_extensions 3.7.4.3 pyh06a4308_0
urllib3 1.26.3 pyhd3eb1b0_0
vc 14.2 h21ff451_1
vs2015_runtime 14.27.29016 h5e58377_2
werkzeug 1.0.1 pyhd3eb1b0_0
wheel 0.36.2 pyhd3eb1b0_0
win_inet_pton 1.1.0 py38haa95532_0
wincertstore 0.2 py38_0
wrapt 1.12.1 py38he774522_1
xz 5.2.5 h62dcd97_0
yarl 1.5.1 py38he774522_0
zipp 3.4.0 pyhd3eb1b0_0
zlib 1.2.11 h62dcd97_4
zstd 1.4.5 h04227a9_0 ================= Configs ================== --------- .faceswap --------- backend: nvidia --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 [scaling.sharpen] method: none amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto skip_mux: False [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: False [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 scalefactor: 0.709 batch-size: 8 [detect.s3fd] confidence: 70 batch-size: 4 [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] centering: face coverage: 68.75 icnr_init: False conv_aware_init: False optimizer: adam learning_rate: 5e-05 reflect_padding: False allow_growth: False mixed_precision: False convert_batchsize: 16 [global.loss] loss_function: ssim mask_loss_function: mse l2_reg_term: 100 eye_multiplier: 3 mouth_multiplier: 2 penalized_mask_loss: False mask_type: extended mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False [model.dfaker] output_size: 128 [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 disable_warp: False color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4

Re: Failed copying input tensor

Posted: Wed Feb 03, 2021 2:16 pm
by bubbatron

And here is the system info.

Code: Select all


============ System Information ============
encoding:            cp1252
git_branch:          master
git_commits:         27a7adb Update README.md. 0941d6d realface model - Bugfix resblock
gpu_cuda:            No global version found. Check Conda packages for Conda Cuda
gpu_cudnn:           No global version found. Check Conda packages for Conda cuDNN
gpu_devices:         GPU_0: GeForce GTX 965M
gpu_devices_active:  GPU_0
gpu_driver:          461.40
gpu_vram:            GPU_0: 2048MB
os_machine:          AMD64
os_platform:         Windows-10-10.0.19041-SP0
os_release:          10
py_command:          C:\Users\master\faceswap/faceswap.py gui
py_conda_version:    conda 4.9.2
py_implementation:   CPython
py_version:          3.8.5
py_virtual_env:      True
sys_cores:           8
sys_processor:       Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
sys_ram:             Total: 16333MB, Available: 9339MB, Used: 6994MB, Free: 9339MB

=============== Pip Packages ===============
absl-py @ file:///tmp/build/80754af9/absl-py_1607439979954/work
aiohttp @ file:///C:/ci/aiohttp_1607109697839/work
astunparse==1.6.3
async-timeout==3.0.1
attrs @ file:///tmp/build/80754af9/attrs_1604765588209/work
blinker==1.4
brotlipy==0.7.0
cachetools @ file:///tmp/build/80754af9/cachetools_1611600262290/work
certifi==2020.12.5
cffi @ file:///C:/ci/cffi_1606255208697/work
chardet @ file:///C:/ci/chardet_1605303225733/work
click @ file:///home/linux1/recipes/ci/click_1610990599742/work
cryptography==2.9.2
cycler==0.10.0
fastcluster==1.1.26
ffmpy==0.2.3
gast @ file:///tmp/build/80754af9/gast_1597433534803/work
google-auth @ file:///tmp/build/80754af9/google-auth_1607969906642/work
google-auth-oauthlib @ file:///tmp/build/80754af9/google-auth-oauthlib_1603929124518/work
google-pasta==0.2.0
grpcio @ file:///C:/ci/grpcio_1597406462198/work
h5py==2.10.0
idna @ file:///home/linux1/recipes/ci/idna_1610986105248/work
imageio @ file:///tmp/build/80754af9/imageio_1594161405741/work
imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1609799311556/work
importlib-metadata @ file:///tmp/build/80754af9/importlib-metadata_1602276842396/work
joblib @ file:///tmp/build/80754af9/joblib_1607970656719/work
Keras-Applications @ file:///tmp/build/80754af9/keras-applications_1594366238411/work
Keras-Preprocessing==1.1.0
kiwisolver @ file:///C:/ci/kiwisolver_1604014703538/work
Markdown @ file:///C:/ci/markdown_1605111189761/work
matplotlib @ file:///C:/ci/matplotlib-base_1592837548929/work
mkl-fft==1.2.0
mkl-random==1.1.1
mkl-service==2.3.0
multidict @ file:///C:/ci/multidict_1600456481656/work
numpy @ file:///C:/ci/numpy_and_numpy_base_1603466732592/work
nvidia-ml-py3 @ git+https://github.com/deepfakes/nvidia-ml-py3.git@6fc29ac84b32bad877f078cb4a777c1548a00bf6
oauthlib==3.1.0
olefile==0.46
opencv-python==4.5.1.48
opt-einsum==3.1.0
pathlib==1.0.1
Pillow @ file:///C:/ci/pillow_1609786840597/work
protobuf==3.13.0
psutil @ file:///C:/ci/psutil_1598370330503/work
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycparser @ file:///tmp/build/80754af9/pycparser_1594388511720/work
PyJWT @ file:///C:/ci/pyjwt_1610893382614/work
pyOpenSSL @ file:///tmp/build/80754af9/pyopenssl_1608057966937/work
pyparsing @ file:///home/linux1/recipes/ci/pyparsing_1610983426697/work
pyreadline==2.1
PySocks @ file:///C:/ci/pysocks_1605287845585/work
python-dateutil @ file:///home/ktietz/src/ci/python-dateutil_1611928101742/work
pywin32==227
requests @ file:///tmp/build/80754af9/requests_1608241421344/work
requests-oauthlib==1.3.0
rsa @ file:///tmp/build/80754af9/rsa_1610483308194/work
scikit-learn @ file:///C:/ci/scikit-learn_1598377018496/work
scipy @ file:///C:/ci/scipy_1604596260408/work
sip==4.19.13
six @ file:///C:/ci/six_1605187374963/work
tensorboard @ file:///home/builder/ktietz/conda/conda-bld/tensorboard_1604313476433/work/tmp_pip_dir
tensorboard-plugin-wit==1.6.0
tensorflow==2.3.0
tensorflow-estimator @ file:///tmp/build/80754af9/tensorflow-estimator_1599136169057/work/whl_temp/tensorflow_estimator-2.3.0-py2.py3-none-any.whl
termcolor==1.1.0
threadpoolctl @ file:///tmp/tmp9twdgx9k/threadpoolctl-2.1.0-py3-none-any.whl
tornado @ file:///C:/ci/tornado_1606942392901/work
tqdm @ file:///tmp/build/80754af9/tqdm_1611857934208/work
typing-extensions @ file:///tmp/build/80754af9/typing_extensions_1611751222202/work
urllib3 @ file:///tmp/build/80754af9/urllib3_1611694770489/work
Werkzeug @ file:///home/ktietz/src/ci/werkzeug_1611932622770/work
win-inet-pton @ file:///C:/ci/win_inet_pton_1605306167264/work
wincertstore==0.2
wrapt==1.12.1
yarl @ file:///C:/ci/yarl_1598045274898/work
zipp @ file:///tmp/build/80754af9/zipp_1604001098328/work

============== Conda Packages ==============
# packages in environment at C:\Users\master\MiniConda3\envs\faceswap:
#
# Name                    Version                   Build  Channel
_tflow_select             2.3.0                       gpu  
absl-py 0.11.0 pyhd3eb1b0_1
aiohttp 3.7.3 py38h2bbff1b_1
astunparse 1.6.3 py_0
async-timeout 3.0.1 py38haa95532_0
attrs 20.3.0 pyhd3eb1b0_0
blas 1.0 mkl
blinker 1.4 py38haa95532_0
brotlipy 0.7.0 py38h2bbff1b_1003
ca-certificates 2021.1.19 haa95532_0
cachetools 4.2.1 pyhd3eb1b0_0
certifi 2020.12.5 py38haa95532_0
cffi 1.14.4 py38hcd4344a_0
chardet 3.0.4 py38haa95532_1003
click 7.1.2 pyhd3eb1b0_0
cryptography 2.9.2 py38h7a1dbc1_0
cudatoolkit 10.1.243 h74a9793_0
cudnn 7.6.5 cuda10.1_0
cycler 0.10.0 py38_0
fastcluster 1.1.26 py38h251f6bf_2 conda-forge ffmpeg 4.3.1 ha925a31_0 conda-forge ffmpy 0.2.3 pypi_0 pypi freetype 2.10.4 hd328e21_0
gast 0.4.0 py_0
git 2.23.0 h6bb4b03_0
google-auth 1.24.0 pyhd3eb1b0_0
google-auth-oauthlib 0.4.2 pyhd3eb1b0_2
google-pasta 0.2.0 py_0
grpcio 1.31.0 py38he7da953_0
h5py 2.10.0 py38h5e291fa_0
hdf5 1.10.4 h7ebc959_0
icc_rt 2019.0.0 h0cc432a_1
icu 58.2 ha925a31_3
idna 2.10 pyhd3eb1b0_0
imageio 2.9.0 py_0
imageio-ffmpeg 0.4.3 pyhd8ed1ab_0 conda-forge importlib-metadata 2.0.0 py_1
intel-openmp 2020.2 254
joblib 1.0.0 pyhd3eb1b0_0
jpeg 9b hb83a4c4_2
keras-applications 1.0.8 py_1
keras-preprocessing 1.1.0 py_1
kiwisolver 1.3.0 py38hd77b12b_0
libpng 1.6.37 h2a8f88b_0
libprotobuf 3.13.0.1 h200bbdf_0
libtiff 4.1.0 h56a325e_1
lz4-c 1.9.3 h2bbff1b_0
markdown 3.3.3 py38haa95532_0
matplotlib 3.2.2 0
matplotlib-base 3.2.2 py38h64f37c6_0
mkl 2020.2 256
mkl-service 2.3.0 py38h196d8e1_0
mkl_fft 1.2.0 py38h45dec08_0
mkl_random 1.1.1 py38h47e9c7a_0
multidict 4.7.6 py38he774522_1
numpy 1.19.2 py38hadc3359_0
numpy-base 1.19.2 py38ha3acd2a_0
nvidia-ml-py3 7.352.1 pypi_0 pypi oauthlib 3.1.0 py_0
olefile 0.46 py_0
opencv-python 4.5.1.48 pypi_0 pypi openssl 1.1.1i h2bbff1b_0
opt_einsum 3.1.0 py_0
pathlib 1.0.1 py_1
pillow 8.1.0 py38h4fa10fc_0
pip 20.3.3 py38haa95532_0
protobuf 3.13.0.1 py38ha925a31_1
psutil 5.7.2 py38he774522_0
pyasn1 0.4.8 py_0
pyasn1-modules 0.2.8 py_0
pycparser 2.20 py_2
pyjwt 2.0.1 py38haa95532_0
pyopenssl 20.0.1 pyhd3eb1b0_1
pyparsing 2.4.7 pyhd3eb1b0_0
pyqt 5.9.2 py38ha925a31_4
pyreadline 2.1 py38_1
pysocks 1.7.1 py38haa95532_0
python 3.8.5 h5fd99cc_1
python-dateutil 2.8.1 pyhd3eb1b0_0
python_abi 3.8 1_cp38 conda-forge pywin32 227 py38he774522_1
qt 5.9.7 vc14h73c81de_0
requests 2.25.1 pyhd3eb1b0_0
requests-oauthlib 1.3.0 py_0
rsa 4.7 pyhd3eb1b0_1
scikit-learn 0.23.2 py38h47e9c7a_0
scipy 1.5.2 py38h14eb087_0
setuptools 52.0.0 py38haa95532_0
sip 4.19.13 py38ha925a31_0
six 1.15.0 py38haa95532_0
sqlite 3.33.0 h2a8f88b_0
tensorboard 2.3.0 pyh4dce500_0
tensorboard-plugin-wit 1.6.0 py_0
tensorflow 2.3.0 mkl_py38h1fcfbd6_0
tensorflow-base 2.3.0 gpu_py38h7339f5a_0
tensorflow-estimator 2.3.0 pyheb71bc4_0
tensorflow-gpu 2.3.0 he13fc11_0
termcolor 1.1.0 py38_1
threadpoolctl 2.1.0 pyh5ca1d4c_0
tk 8.6.10 he774522_0
tornado 6.1 py38h2bbff1b_0
tqdm 4.56.0 pyhd3eb1b0_0
typing-extensions 3.7.4.3 hd3eb1b0_0
typing_extensions 3.7.4.3 pyh06a4308_0
urllib3 1.26.3 pyhd3eb1b0_0
vc 14.2 h21ff451_1
vs2015_runtime 14.27.29016 h5e58377_2
werkzeug 1.0.1 pyhd3eb1b0_0
wheel 0.36.2 pyhd3eb1b0_0
win_inet_pton 1.1.0 py38haa95532_0
wincertstore 0.2 py38_0
wrapt 1.12.1 py38he774522_1
xz 5.2.5 h62dcd97_0
yarl 1.5.1 py38he774522_0
zipp 3.4.0 pyhd3eb1b0_0
zlib 1.2.11 h62dcd97_4
zstd 1.4.5 h04227a9_0 ================= Configs ================== --------- .faceswap --------- backend: nvidia --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 [scaling.sharpen] method: none amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto skip_mux: False [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: False [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 scalefactor: 0.709 batch-size: 8 [detect.s3fd] confidence: 70 batch-size: 4 [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] centering: face coverage: 68.75 icnr_init: False conv_aware_init: False optimizer: adam learning_rate: 5e-05 reflect_padding: False allow_growth: False mixed_precision: False convert_batchsize: 16 [global.loss] loss_function: ssim mask_loss_function: mse l2_reg_term: 100 eye_multiplier: 3 mouth_multiplier: 2 penalized_mask_loss: False mask_type: extended mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False [model.dfaker] output_size: 128 [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 disable_warp: False color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4

Re: Failed copying input tensor

Posted: Wed Feb 03, 2021 3:08 pm
by bubbatron

Reducing the batch size from 18 to 8 to 4 to 1 to 1 did not help.


Re: Failed copying input tensor

Posted: Wed Feb 03, 2021 9:24 pm
by torzdf

You have a 2GB GPU. There is literally no way you are running Villain model on that card.

At best you may be able to run the "lightweight" model at a very low batchsize (with mixed precision enabled)... but you may also not be able to run Faceswap at all on that card, I'm afraid.


Re: Failed copying input tensor

Posted: Wed Feb 03, 2021 9:50 pm
by bubbatron

Aha! Well, that explains it anyway. Thank you.