Page 1 of 1

ValueError: could not broadcast input array from shape (512,512,3) into shape (512,512)

Posted: Sat Aug 14, 2021 11:13 am
by jbu

Hi, i am trying to create a video for a weeding so it's vary urgent, i get this error when training with default values:
ValueError: could not broadcast input array from shape (512,512,3) into shape (512,512)

full log:

Code: Select all

08/14/2021 14:04:47 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread 2 of 2: '_run_1'
08/14/2021 14:04:47 MainProcess     _run_1                         generator       _minibatch                     DEBUG    Loading minibatch generator: (image_count: 14, side: 'a', do_shuffle: False)
08/14/2021 14:04:47 MainProcess     _training_0                    multithreading  start                          DEBUG    Started all threads '_run': 2
08/14/2021 14:04:47 MainProcess     _training_0                    _base           _load_generator                DEBUG    Loading generator
08/14/2021 14:04:47 MainProcess     _training_0                    _base           _load_generator                DEBUG    input_size: 64, output_shapes: [(64, 64, 3)]
08/14/2021 14:04:47 MainProcess     _training_0                    generator       __init__                       DEBUG    Initializing TrainingDataGenerator: (model_input_size: 64, model_output_shapes: [(64, 64, 3)], coverage_ratio: 0.6875, color_order: bgr, augment_color: True, no_flip: False, no_warp: False, warp_to_landmarks: False, config: {'centering': 'face', 'coverage': 68.75, 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'epsilon_exponent': -7, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'nan_protection': True, 'convert_batchsize': 16, 'loss_function': 'ssim', 'mask_loss_function': 'mse', 'l2_reg_term': 100, 'eye_multiplier': 3, 'mouth_multiplier': 2, 'penalized_mask_loss': True, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
08/14/2021 14:04:47 MainProcess     _training_0                    generator       __init__                       DEBUG    Initialized TrainingDataGenerator
08/14/2021 14:04:47 MainProcess     _training_0                    generator       minibatch_ab                   DEBUG    Queue batches: (image_count: 14, batchsize: 14, side: 'b', do_shuffle: False, is_preview, False, is_timelapse: True)
08/14/2021 14:04:47 MainProcess     _training_0                    augmentation    __init__                       DEBUG    Initializing ImageAugmentation: (batchsize: 14, is_display: True, input_size: 64, output_shapes: [(64, 64, 3)], coverage_ratio: 0.6875, config: {'centering': 'face', 'coverage': 68.75, 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'epsilon_exponent': -7, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'nan_protection': True, 'convert_batchsize': 16, 'loss_function': 'ssim', 'mask_loss_function': 'mse', 'l2_reg_term': 100, 'eye_multiplier': 3, 'mouth_multiplier': 2, 'penalized_mask_loss': True, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
08/14/2021 14:04:47 MainProcess     _training_0                    augmentation    __init__                       DEBUG    Output sizes: [64]
08/14/2021 14:04:47 MainProcess     _training_0                    augmentation    __init__                       DEBUG    Initialized ImageAugmentation
08/14/2021 14:04:47 MainProcess     _training_0                    multithreading  __init__                       DEBUG    Initializing BackgroundGenerator: (target: '_run', thread_count: 2)
08/14/2021 14:04:47 MainProcess     _training_0                    multithreading  __init__                       DEBUG    Initialized BackgroundGenerator: '_run'
08/14/2021 14:04:47 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread(s): '_run'
08/14/2021 14:04:47 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread 1 of 2: '_run_0'
08/14/2021 14:04:47 MainProcess     _run_0                         generator       _minibatch                     DEBUG    Loading minibatch generator: (image_count: 14, side: 'b', do_shuffle: False)
08/14/2021 14:04:47 MainProcess     _training_0                    multithreading  start                          DEBUG    Starting thread 2 of 2: '_run_1'
08/14/2021 14:04:47 MainProcess     _run_1                         generator       _minibatch                     DEBUG    Loading minibatch generator: (image_count: 14, side: 'b', do_shuffle: False)
08/14/2021 14:04:47 MainProcess     _training_0                    multithreading  start                          DEBUG    Started all threads '_run': 2
08/14/2021 14:04:47 MainProcess     _training_0                    _base           set_timelapse_feed             DEBUG    Set time-lapse feed: {'a': <generator object BackgroundGenerator.iterator at 0x0000024B32B3B510>, 'b': <generator object BackgroundGenerator.iterator at 0x0000024B0400F580>}
08/14/2021 14:04:47 MainProcess     _training_0                    _base           _setup                         DEBUG    Set up time-lapse
08/14/2021 14:04:47 MainProcess     _training_0                    _base           output_timelapse               DEBUG    Getting time-lapse samples
08/14/2021 14:04:47 MainProcess     _run_1                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['.facebook_1517689826874_0.png', '20171020_173613_0.png', '20171020_173615_0.png', '20171020_173616_0.png', '20171020_173618(1)_0.png', '20171020_173618_0.png', '20171020_173623_0.png', '20171020_173625_0.png', '20191016_105025_0.png', '20191019_091247_0.png', '20191019_091249_0.png', '20191019_112043_0.png', '20191019_112044_0.png', '20191019_160201_0.png']
08/14/2021 14:04:47 MainProcess     _run_1                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['Trinity _720P HD_000094_0.png', 'Trinity _720P HD_000095_0.png', 'Trinity _720P HD_000096_0.png', 'Trinity _720P HD_000097_0.png', 'Trinity _720P HD_000098_0.png', 'Trinity _720P HD_000099_0.png', 'Trinity _720P HD_000100_0.png', 'Trinity _720P HD_000101_0.png', 'Trinity _720P HD_000102_0.png', 'Trinity _720P HD_000112_0.png', 'Trinity _720P HD_000116_0.png', 'Trinity _720P HD_000117_0.png', 'Trinity _720P HD_000118_0.png', 'Trinity _720P HD_000119_0.png']
08/14/2021 14:04:47 MainProcess     _run_0                         augmentation    initialize                     DEBUG    Initializing constants. training_size: 384
08/14/2021 14:04:47 MainProcess     _run_0                         augmentation    initialize                     DEBUG    Initialized constants: {'clahe_base_contrast': 3, 'tgt_slices': slice(60, 324, None), 'warp_mapx': '[[[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]]', 'warp_mapy': '[[[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [381. 381. 381. ... 381. 381. 381.]\n  [382. 382. 382. ... 382. 382. 382.]\n  [383. 383. 383. ... 383. 383. 383.]]\n\n [[  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  ...\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]]]'}
08/14/2021 14:04:47 MainProcess     _run_0                         augmentation    initialize                     DEBUG    Initializing constants. training_size: 384
08/14/2021 14:04:47 MainProcess     _run_0                         augmentation    initialize                     DEBUG    Initialized constants: {'clahe_base_contrast': 3, 'tgt_slices': slice(60, 324, None), 'warp_mapx': '[[[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]\n\n [[ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]\n  [ 60. 126. 192. 258. 324.]]]', 'warp_mapy': '[[[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]\n\n [[ 60.  60.  60.  60.  60.]\n  [126. 126. 126. 126. 126.]\n  [192. 192. 192. 192. 192.]\n  [258. 258. 258. 258. 258.]\n  [324. 324. 324. 324. 324.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]\n\n [[  0   0]\n  [  0 383]\n  [383 383]\n  [383   0]\n  [191   0]\n  [191 383]\n  [383 191]\n  [  0 191]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [381. 381. 381. ... 381. 381. 381.]\n  [382. 382. 382. ... 382. 382. 382.]\n  [383. 383. 383. ... 383. 383. 383.]]\n\n [[  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  ...\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]\n  [  0.   1.   2. ... 381. 382. 383.]]]'}
08/14/2021 14:04:47 MainProcess     _run_0                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['.facebook_1517689826874_0.png', '20171020_173613_0.png', '20171020_173615_0.png', '20171020_173616_0.png', '20171020_173618(1)_0.png', '20171020_173618_0.png', '20171020_173623_0.png', '20171020_173625_0.png', '20191016_105025_0.png', '20191019_091247_0.png', '20191019_091249_0.png', '20191019_112043_0.png', '20191019_112044_0.png', '20191019_160201_0.png']
08/14/2021 14:04:47 MainProcess     _run_0                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['Trinity _720P HD_000094_0.png', 'Trinity _720P HD_000095_0.png', 'Trinity _720P HD_000096_0.png', 'Trinity _720P HD_000097_0.png', 'Trinity _720P HD_000098_0.png', 'Trinity _720P HD_000099_0.png', 'Trinity _720P HD_000100_0.png', 'Trinity _720P HD_000101_0.png', 'Trinity _720P HD_000102_0.png', 'Trinity _720P HD_000112_0.png', 'Trinity _720P HD_000116_0.png', 'Trinity _720P HD_000117_0.png', 'Trinity _720P HD_000118_0.png', 'Trinity _720P HD_000119_0.png']
08/14/2021 14:04:47 MainProcess     _training_0                    _base           compile_sample                 DEBUG    Compiling samples: (side: 'a', samples: 14)
08/14/2021 14:04:47 MainProcess     _training_0                    _base           compile_sample                 DEBUG    Compiling samples: (side: 'b', samples: 14)
08/14/2021 14:04:47 MainProcess     _training_0                    _base           output_timelapse               DEBUG    Got time-lapse samples: {'a': 3, 'b': 3}
08/14/2021 14:04:47 MainProcess     _training_0                    _base           show_sample                    DEBUG    Showing sample
08/14/2021 14:04:47 MainProcess     _training_0                    _base           _get_predictions               DEBUG    Getting Predictions
08/14/2021 14:04:47 MainProcess     _run_1                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['.facebook_1517689826874_0.png', '20171020_173613_0.png', '20171020_173615_0.png', '20171020_173616_0.png', '20171020_173618(1)_0.png', '20171020_173618_0.png', '20171020_173623_0.png', '20171020_173625_0.png', '20191016_105025_0.png', '20191019_091247_0.png', '20191019_091249_0.png', '20191019_112043_0.png', '20191019_112044_0.png', '20191019_160201_0.png']
08/14/2021 14:04:47 MainProcess     _run_1                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['Trinity _720P HD_000094_0.png', 'Trinity _720P HD_000095_0.png', 'Trinity _720P HD_000096_0.png', 'Trinity _720P HD_000097_0.png', 'Trinity _720P HD_000098_0.png', 'Trinity _720P HD_000099_0.png', 'Trinity _720P HD_000100_0.png', 'Trinity _720P HD_000101_0.png', 'Trinity _720P HD_000102_0.png', 'Trinity _720P HD_000112_0.png', 'Trinity _720P HD_000116_0.png', 'Trinity _720P HD_000117_0.png', 'Trinity _720P HD_000118_0.png', 'Trinity _720P HD_000119_0.png']
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_predictions               DEBUG    Returning predictions: {'a_a': (14, 64, 64, 3), 'b_b': (14, 64, 64, 3), 'a_b': (14, 64, 64, 3), 'b_a': (14, 64, 64, 3)}
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _to_full_frame                 DEBUG    side: 'a', number of sample arrays: 3, prediction.shapes: [(14, 64, 64, 3), (14, 64, 64, 3)])
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _process_full                  DEBUG    full_size: 384, prediction_size: 64, color: (0, 0, 255)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _resize_sample                 DEBUG    Resizing sample: (side: 'a', sample.shape: (14, 384, 384, 3), target_size: 92, scale: 0.23958333333333334)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _resize_sample                 DEBUG    Resized sample: (side: 'a' shape: (14, 92, 92, 3))
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _process_full                  DEBUG    Overlayed background. Shape: (14, 92, 92, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _compile_masked                DEBUG    masked shapes: [(14, 64, 64, 3), (14, 64, 64, 3), (14, 64, 64, 3)]
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _overlay_foreground            DEBUG    Overlayed foreground. Shape: (14, 92, 92, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _overlay_foreground            DEBUG    Overlayed foreground. Shape: (14, 92, 92, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _overlay_foreground            DEBUG    Overlayed foreground. Shape: (14, 92, 92, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_headers                   DEBUG    side: 'a', width: 92
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_headers                   DEBUG    height: 20, total_width: 276
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_headers                   DEBUG    texts: ['Original (A)', 'Original > Original', 'Original > Swap'], text_sizes: [(52, 7), (84, 7), (73, 7)], text_x: [20, 96, 193], text_y: 13
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_headers                   DEBUG    header_box.shape: (20, 276, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _to_full_frame                 DEBUG    side: 'b', number of sample arrays: 3, prediction.shapes: [(14, 64, 64, 3), (14, 64, 64, 3)])
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _process_full                  DEBUG    full_size: 384, prediction_size: 64, color: (0, 0, 255)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _resize_sample                 DEBUG    Resizing sample: (side: 'b', sample.shape: (14, 384, 384, 3), target_size: 92, scale: 0.23958333333333334)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _resize_sample                 DEBUG    Resized sample: (side: 'b' shape: (14, 92, 92, 3))
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _process_full                  DEBUG    Overlayed background. Shape: (14, 92, 92, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _compile_masked                DEBUG    masked shapes: [(14, 64, 64, 3), (14, 64, 64, 3), (14, 64, 64, 3)]
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _overlay_foreground            DEBUG    Overlayed foreground. Shape: (14, 92, 92, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _overlay_foreground            DEBUG    Overlayed foreground. Shape: (14, 92, 92, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _overlay_foreground            DEBUG    Overlayed foreground. Shape: (14, 92, 92, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_headers                   DEBUG    side: 'b', width: 92
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_headers                   DEBUG    height: 20, total_width: 276
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_headers                   DEBUG    texts: ['Swap (B)', 'Swap > Swap', 'Swap > Original'], text_sizes: [(43, 7), (63, 7), (73, 7)], text_x: [24, 106, 193], text_y: 13
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_headers                   DEBUG    header_box.shape: (20, 276, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _duplicate_headers             DEBUG    side: a header.shape: (20, 276, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _duplicate_headers             DEBUG    side: b header.shape: (20, 276, 3)
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _stack_images                  DEBUG    Stack images
08/14/2021 14:04:48 MainProcess     _training_0                    _base           get_transpose_axes             DEBUG    Even number of images to stack
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _stack_images                  DEBUG    Stacked images
08/14/2021 14:04:48 MainProcess     _training_0                    _base           show_sample                    DEBUG    Compiled sample
08/14/2021 14:04:48 MainProcess     _training_0                    _base           output_timelapse               DEBUG    Created time-lapse: 'C:\Users\eladi\Downloads\orit\movie\Trinity _720P HD\Timelapse_neo_elad\1628939088.jpg'
08/14/2021 14:04:48 MainProcess     _training_0                    train           _run_training_cycle            DEBUG    Save Iteration: (iteration: 1
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _save                          DEBUG    Backing up and saving models
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_save_averages             DEBUG    Getting save averages
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _get_save_averages             DEBUG    Average losses since last save: [0.3277677595615387, 0.4694632589817047]
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _should_backup                 DEBUG    Set initial save iteration loss average for 'a': 0.3277677595615387
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _should_backup                 DEBUG    Set initial save iteration loss average for 'b': 0.4694632589817047
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _should_backup                 DEBUG    Updated lowest historical save iteration averages from: {'a': 0.3277677595615387, 'b': 0.4694632589817047} to: {'a': 0.3277677595615387, 'b': 0.4694632589817047}
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _should_backup                 DEBUG    Should backup: True
08/14/2021 14:04:48 MainProcess     _training_0                    _base           save                           DEBUG    Saving State
08/14/2021 14:04:48 MainProcess     _training_0                    serializer      save                           DEBUG    filename: C:\Users\eladi\Downloads\orit\movie\matrix_train\neo_to_elad_model\original_state.json, data type: <class 'dict'>
08/14/2021 14:04:48 MainProcess     _training_0                    serializer      _check_extension               DEBUG    Original filename: 'C:\Users\eladi\Downloads\orit\movie\matrix_train\neo_to_elad_model\original_state.json', final filename: 'C:\Users\eladi\Downloads\orit\movie\matrix_train\neo_to_elad_model\original_state.json'
08/14/2021 14:04:48 MainProcess     _training_0                    serializer      marshal                        DEBUG    data type: <class 'dict'>
08/14/2021 14:04:48 MainProcess     _training_0                    serializer      marshal                        DEBUG    returned data type: <class 'bytes'>
08/14/2021 14:04:48 MainProcess     _training_0                    _base           save                           DEBUG    Saved State
08/14/2021 14:04:48 MainProcess     _training_0                    _base           _save                          INFO     [Saved models] - Average loss since last save: face_a: 0.32777, face_b: 0.46946
08/14/2021 14:04:51 MainProcess     _run_1                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['Trinity _720P HD_002985_0.png', 'Trinity _720P HD_000804_0.png', 'Trinity _720P HD_000629_1.png', 'Trinity _720P HD_000664_0.png', 'Trinity _720P HD_001898_0.png', 'Trinity _720P HD_002510_0.png', 'Trinity _720P HD_000585_1.png', 'Trinity _720P HD_000803_0.png', 'Trinity _720P HD_002295_0.png', 'Trinity _720P HD_003337_1.png', 'Trinity _720P HD_001676_1.png', 'Trinity _720P HD_001529_0.png', 'Trinity _720P HD_002507_0.png', 'Trinity _720P HD_002441_0.png', 'Trinity _720P HD_001522_0.png', 'Trinity _720P HD_002171_0.png']
08/14/2021 14:04:51 MainProcess     _run_1                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['IMG_20181127_172451_0.png', 'IMG_20191020_090223_0.png', '20200627_144739_0.png', '_DSC3963-HDR-2_0.png', '20191019_160204(0)_0.png', 'IMG_20190906_112231_0.png', 'IMG_20191017_143405_0.png', '20200627_144708_0.png', 'IMG_20190728_194355_0.png', 'IMG_20171121_231840_0.png', '20200627_144714_0.png', 'IMG_20191018_124504_0.png', 'IMG_20181008_154640_0.png', 'IMG_20191018_173035_0.png', '_DSC4823_0.png', '_DSC4594_0.png']
08/14/2021 14:04:57 MainProcess     _run_1                         generator       cache_metadata                 DEBUG    All metadata already cached for: ['IMG_20190728_193931_0.png', 'Screenshot_2018-06-24-08-11-43-419_com.okcupid.okcupid_0.png', 'IMG_20190713_010624_0.png', 'IMG_20190728_194320_0.png', 'IMG_20191020_204213_0.png', '20171020_173618_0.png', 'IMG_20191020_204216_0.png', 'IMG_20191020_201234_0.png', 'IMG_20191018_133519_0.png', '_DSC4595_0.png', 'IMG-20210621-WA0080_0.png', 'IMG_20190728_194326_0.png', 'IMG_20190728_195623_0.png', 'IMG_20190906_112224_0.png', '20200717_190636_0.png', '_DSC3122-HDR-2_0.png']
08/14/2021 14:05:00 MainProcess     _run_0                         multithreading  run                            DEBUG    Error in thread (_run_0): could not broadcast input array from shape (512,512,3) into shape (512,512)
08/14/2021 14:05:03 MainProcess     _training_0                    multithreading  check_and_raise_error          DEBUG    Thread error caught: [(<class 'ValueError'>, ValueError('could not broadcast input array from shape (512,512,3) into shape (512,512)'), <traceback object at 0x0000024B3AE48680>)]
08/14/2021 14:05:03 MainProcess     _training_0                    multithreading  run                            DEBUG    Error in thread (_training_0): could not broadcast input array from shape (512,512,3) into shape (512,512)
08/14/2021 14:05:03 MainProcess     _run_1                         multithreading  run                            DEBUG    Error in thread (_run_1): could not broadcast input array from shape (512,512,3) into shape (512,512)
08/14/2021 14:05:03 MainProcess     MainThread                     train           _monitor                       DEBUG    Thread error detected
08/14/2021 14:05:03 MainProcess     MainThread                     train           _monitor                       DEBUG    Closed Monitor
08/14/2021 14:05:03 MainProcess     MainThread                     train           _end_thread                    DEBUG    Ending Training thread
08/14/2021 14:05:03 MainProcess     MainThread                     train           _end_thread                    CRITICAL Error caught! Exiting...
08/14/2021 14:05:03 MainProcess     MainThread                     multithreading  join                           DEBUG    Joining Threads: '_training'
08/14/2021 14:05:03 MainProcess     MainThread                     multithreading  join                           DEBUG    Joining Thread: '_training_0'
08/14/2021 14:05:03 MainProcess     MainThread                     multithreading  join                           ERROR    Caught exception in thread: '_training_0'
Traceback (most recent call last):
  File "C:\Users\eladi\faceswap\lib\cli\launcher.py", line 182, in execute_script
    process.process()
  File "C:\Users\eladi\faceswap\scripts\train.py", line 190, in process
    self._end_thread(thread, err)
  File "C:\Users\eladi\faceswap\scripts\train.py", line 230, in _end_thread
    thread.join()
  File "C:\Users\eladi\faceswap\lib\multithreading.py", line 121, in join
    raise thread.err[1].with_traceback(thread.err[2])
  File "C:\Users\eladi\faceswap\lib\multithreading.py", line 37, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\eladi\faceswap\scripts\train.py", line 252, in _training
    raise err
  File "C:\Users\eladi\faceswap\scripts\train.py", line 242, in _training
    self._run_training_cycle(model, trainer)
  File "C:\Users\eladi\faceswap\scripts\train.py", line 327, in _run_training_cycle
    trainer.train_one_step(viewer, timelapse)
  File "C:\Users\eladi\faceswap\plugins\train\trainer\_base.py", line 191, in train_one_step
    model_inputs, model_targets = self._feeder.get_batch()
  File "C:\Users\eladi\faceswap\plugins\train\trainer\_base.py", line 416, in get_batch
    batch = next(self._feeds[side])
  File "C:\Users\eladi\faceswap\lib\multithreading.py", line 156, in iterator
    self.check_and_raise_error()
  File "C:\Users\eladi\faceswap\lib\multithreading.py", line 84, in check_and_raise_error
    raise error[1].with_traceback(error[2])
  File "C:\Users\eladi\faceswap\lib\multithreading.py", line 37, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\eladi\faceswap\lib\multithreading.py", line 145, in _run
    for item in self.generator(*self._gen_args, **self._gen_kwargs):
  File "C:\Users\eladi\faceswap\lib\training\generator.py", line 598, in _minibatch
    yield self._process_batch(img_paths, side)
  File "C:\Users\eladi\faceswap\lib\training\generator.py", line 621, in _process_batch
    batch = self._face_cache.cache_metadata(filenames)
  File "C:\Users\eladi\faceswap\lib\training\generator.py", line 205, in cache_metadata
    batch, metadata = read_image_batch(filenames, with_metadata=True)
  File "C:\Users\eladi\faceswap\lib\image.py", line 359, in read_image_batch
    batch = np.array(batch)
ValueError: could not broadcast input array from shape (512,512,3) into shape (512,512)

============ System Information ============
encoding:            cp1252
git_branch:          Not Found
git_commits:         Not Found
gpu_cuda:            11.4
gpu_cudnn:           No global version found. Check Conda packages for Conda cuDNN
gpu_devices:         GPU_0: NVIDIA GeForce RTX 3060 Ti
gpu_devices_active:  GPU_0
gpu_driver:          471.41
gpu_vram:            GPU_0: 8192MB
os_machine:          AMD64
os_platform:         Windows-10-10.0.19043-SP0
os_release:          10
py_command:          C:\Users\eladi\faceswap\faceswap.py train -A C:/Users/eladi/Downloads/orit/movie/matrix_train/neo -B C:\Users\eladi\Downloads\orit\movie\elad_train -m C:/Users/eladi/Downloads/orit/movie/matrix_train/neo_to_elad_model -t original -bs 16 -it 1000000 -s 250 -ss 25000 -tia C:/Users/eladi/Downloads/orit/movie/matrix_train/neo -tib C:/Users/eladi/Downloads/orit/movie/elad_train -to C:/Users/eladi/Downloads/orit/movie/Trinity _720P HD/Timelapse_neo_elad -ps 100 -L INFO -gui
py_conda_version:    conda 4.10.3
py_implementation:   CPython
py_version:          3.8.11
py_virtual_env:      True
sys_cores:           16
sys_processor:       Intel64 Family 6 Model 165 Stepping 5, GenuineIntel
sys_ram:             Total: 32701MB, Available: 25396MB, Used: 7305MB, Free: 25396MB

=============== Pip Packages ===============
absl-py==0.13.0
astunparse==1.6.3
cachetools==4.2.2
certifi==2021.5.30
charset-normalizer==2.0.4
colorama==0.4.4
cycler==0.10.0
fastcluster==1.1.26
ffmpy==0.2.3
flatbuffers==1.12
gast==0.3.3
google-auth==1.34.0
google-auth-oauthlib==0.4.5
google-pasta==0.2.0
grpcio==1.32.0
h5py==2.10.0
idna==3.2
imageio @ file:///tmp/build/80754af9/imageio_1617700267927/work
imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1621542018480/work
joblib @ file:///tmp/build/80754af9/joblib_1613502643832/work
Keras-Preprocessing==1.1.2
kiwisolver @ file:///C:/ci/kiwisolver_1612282606037/work
Markdown==3.3.4
matplotlib @ file:///C:/ci/matplotlib-base_1592837548929/work
mkl-fft==1.3.0
mkl-random==1.1.1
mkl-service==2.3.0
numpy @ file:///C:/ci/numpy_and_numpy_base_1603466732592/work
nvidia-ml-py3 @ git+https://github.com/deepfakes/nvidia-ml-py3.git@6fc29ac84b32bad877f078cb4a777c1548a00bf6
oauthlib==3.1.1
olefile==0.46
opencv-python==4.5.3.56
opt-einsum==3.3.0
pathlib==1.0.1
Pillow @ file:///C:/ci/pillow_1625663293593/work
protobuf==3.17.3
psutil @ file:///C:/ci/psutil_1612298324802/work
pyasn1==0.4.8
pyasn1-modules==0.2.8
pyparsing @ file:///home/linux1/recipes/ci/pyparsing_1610983426697/work
python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
pywin32==228
requests==2.26.0
requests-oauthlib==1.3.0
rsa==4.7.2
scikit-learn @ file:///C:/ci/scikit-learn_1622739500535/work
scipy @ file:///C:/ci/scipy_1616703433439/work
sip==4.19.13
six==1.15.0
tensorboard==2.6.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.0
tensorflow-estimator==2.4.0
tensorflow-gpu==2.4.3
termcolor==1.1.0
threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1628668762525/work
tornado @ file:///C:/ci/tornado_1606942392901/work
tqdm @ file:///tmp/build/80754af9/tqdm_1627710282869/work
typing-extensions==3.7.4.3
urllib3==1.26.6
Werkzeug==2.0.1
wincertstore==0.2
wrapt==1.12.1

============== Conda Packages ==============
# packages in environment at C:\Users\eladi\MiniConda3\envs\faceswap:
#
# Name                    Version                   Build  Channel
absl-py                   0.13.0                   pypi_0    pypi
astunparse                1.6.3                    pypi_0    pypi
blas                      1.0                         mkl  
ca-certificates 2021.7.5 haa95532_1
cachetools 4.2.2 pypi_0 pypi certifi 2021.5.30 py38haa95532_0
charset-normalizer 2.0.4 pypi_0 pypi colorama 0.4.4 pypi_0 pypi cycler 0.10.0 py38_0
fastcluster 1.1.26 py38h251f6bf_2 conda-forge ffmpeg 4.3.1 ha925a31_0 conda-forge ffmpy 0.2.3 pypi_0 pypi flatbuffers 1.12 pypi_0 pypi freetype 2.10.4 hd328e21_0
gast 0.3.3 pypi_0 pypi git 2.23.0 h6bb4b03_0
google-auth 1.34.0 pypi_0 pypi google-auth-oauthlib 0.4.5 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi grpcio 1.32.0 pypi_0 pypi h5py 2.10.0 pypi_0 pypi icc_rt 2019.0.0 h0cc432a_1
icu 58.2 ha925a31_3
idna 3.2 pypi_0 pypi imageio 2.9.0 pyhd3eb1b0_0
imageio-ffmpeg 0.4.4 pyhd8ed1ab_0 conda-forge intel-openmp 2021.3.0 haa95532_3372
joblib 1.0.1 pyhd3eb1b0_0
jpeg 9b hb83a4c4_2
keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.3.1 py38hd77b12b_0
libpng 1.6.37 h2a8f88b_0
libtiff 4.2.0 hd0e1b90_0
lz4-c 1.9.3 h2bbff1b_1
markdown 3.3.4 pypi_0 pypi matplotlib 3.2.2 0
matplotlib-base 3.2.2 py38h64f37c6_0
mkl 2020.2 256
mkl-service 2.3.0 py38h196d8e1_0
mkl_fft 1.3.0 py38h46781fe_0
mkl_random 1.1.1 py38h47e9c7a_0
numpy 1.19.2 py38hadc3359_0
numpy-base 1.19.2 py38ha3acd2a_0
nvidia-ml-py3 7.352.1 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi olefile 0.46 py_0
opencv-python 4.5.3.56 pypi_0 pypi openssl 1.1.1k h2bbff1b_0
opt-einsum 3.3.0 pypi_0 pypi pathlib 1.0.1 py_1
pillow 8.3.1 py38h4fa10fc_0
pip 21.2.2 py38haa95532_0
protobuf 3.17.3 pypi_0 pypi psutil 5.8.0 py38h2bbff1b_1
pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pyparsing 2.4.7 pyhd3eb1b0_0
pyqt 5.9.2 py38ha925a31_4
python 3.8.11 h6244533_1
python-dateutil 2.8.2 pyhd3eb1b0_0
python_abi 3.8 2_cp38 conda-forge pywin32 228 py38hbaba5e8_1
qt 5.9.7 vc14h73c81de_0
requests 2.26.0 pypi_0 pypi requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.7.2 pypi_0 pypi scikit-learn 0.24.2 py38hf11a4ad_1
scipy 1.6.2 py38h14eb087_0
setuptools 52.0.0 py38haa95532_0
sip 4.19.13 py38ha925a31_0
six 1.15.0 pypi_0 pypi sqlite 3.36.0 h2bbff1b_0
tensorboard 2.6.0 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi tensorflow-estimator 2.4.0 pypi_0 pypi tensorflow-gpu 2.4.3 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi threadpoolctl 2.2.0 pyhbf3da8f_0
tk 8.6.10 he774522_0
tornado 6.1 py38h2bbff1b_0
tqdm 4.62.0 pyhd3eb1b0_1
typing-extensions 3.7.4.3 pypi_0 pypi urllib3 1.26.6 pypi_0 pypi vc 14.2 h21ff451_1
vs2015_runtime 14.27.29016 h5e58377_2
werkzeug 2.0.1 pypi_0 pypi wheel 0.36.2 pyhd3eb1b0_0
wincertstore 0.2 py38_0
wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h62dcd97_0
zlib 1.2.11 h62dcd97_4
zstd 1.4.9 h19a0ad4_0 =============== State File ================= { "name": "original", "sessions": { "1": { "timestamp": 1628939071.7473178, "no_logs": false, "loss_names": [ "total", "face_a", "face_b" ], "batchsize": 16, "iterations": 1, "config": { "learning_rate": 5e-05, "epsilon_exponent": -7, "allow_growth": false, "nan_protection": true, "convert_batchsize": 16, "eye_multiplier": 3, "mouth_multiplier": 2 } } }, "lowest_avg_loss": { "a": 0.3277677595615387, "b": 0.4694632589817047 }, "iterations": 1, "config": { "centering": "face", "coverage": 68.75, "optimizer": "adam", "learning_rate": 5e-05, "epsilon_exponent": -7, "allow_growth": false, "mixed_precision": false, "nan_protection": true, "convert_batchsize": 16, "loss_function": "ssim", "mask_loss_function": "mse", "l2_reg_term": 100, "eye_multiplier": 3, "mouth_multiplier": 2, "penalized_mask_loss": true, "mask_type": "extended", "mask_blur_kernel": 3, "mask_threshold": 4, "learn_mask": false, "lowmem": false } } ================= Configs ================== --------- .faceswap --------- backend: nvidia --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 [scaling.sharpen] method: none amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto skip_mux: False [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: False [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 scalefactor: 0.709 batch-size: 8 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 [detect.s3fd] confidence: 70 batch-size: 4 [mask.bisenet_fp] batch-size: 8 include_ears: False include_hair: False include_glasses: True [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] centering: face coverage: 68.75 icnr_init: False conv_aware_init: False optimizer: adam learning_rate: 5e-05 epsilon_exponent: -7 reflect_padding: False allow_growth: False mixed_precision: False nan_protection: True convert_batchsize: 16 [global.loss] loss_function: ssim mask_loss_function: mse l2_reg_term: 100 eye_multiplier: 3 mouth_multiplier: 2 penalized_mask_loss: True mask_type: extended mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False [model.dfaker] output_size: 128 [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.phaze_a] output_size: 128 shared_fc: none enable_gblock: True split_fc: True split_gblock: False split_decoders: False enc_architecture: fs_original enc_scaling: 40 enc_load_weights: True bottleneck_type: dense bottleneck_norm: none bottleneck_size: 1024 bottleneck_in_encoder: True fc_depth: 1 fc_min_filters: 1024 fc_max_filters: 1024 fc_dimensions: 4 fc_filter_slope: -0.5 fc_dropout: 0.0 fc_upsampler: upsample2d fc_upsamples: 1 fc_upsample_filters: 512 fc_gblock_depth: 3 fc_gblock_min_nodes: 512 fc_gblock_max_nodes: 512 fc_gblock_filter_slope: -0.5 fc_gblock_dropout: 0.0 dec_upscale_method: subpixel dec_norm: none dec_min_filters: 64 dec_max_filters: 512 dec_filter_slope: -0.45 dec_res_blocks: 1 dec_output_kernel: 5 dec_gaussian: True dec_skip_last_residual: True freeze_layers: keras_encoder load_layers: encoder fs_original_depth: 4 fs_original_min_filters: 128 fs_original_max_filters: 1024 mobilenet_width: 1.0 mobilenet_depth: 1 mobilenet_dropout: 0.001 [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4

Re: ValueError: could not broadcast input array from shape (512,512,3) into shape (512,512)

Posted: Sat Aug 14, 2021 11:18 am
by torzdf

If I were to guess, I'd say there are black and white images in your training set. This shouldn't matter, and I haven't seen this issue before, but it's worth checking. If you do, remove the black and white images from your training set and see if you can get it running.


Re: ValueError: could not broadcast input array from shape (512,512,3) into shape (512,512)

Posted: Sat Aug 14, 2021 2:01 pm
by jbu

Thanks, i don't have and it fail the same way on other training sets


Re: ValueError: could not broadcast input array from shape (512,512,3) into shape (512,512)

Posted: Sun Aug 15, 2021 10:32 am
by torzdf

Please see this response here, as I believe it is also applicable to your situation:

viewtopic.php?p=6006#p6006