But, then the gui will not launch due to tensorflow being below 2.10.
I have also tried changing the enc to efficientnet_v2_m but run into the error "ValueError: No model config found in the file at <tensorflow.python.platform.gfile.GFile object at 0x0000013483CD3340>"
Any suggestions on how to get Phaze-A + StoJo presets working would be appreciated, thanks!
Code: Select all
11/02/2023 23:32:57 MainProcess _training generator set_timelapse_feed DEBUG Setting preview feed: (side: 'a', images: 1952)
11/02/2023 23:32:57 MainProcess _training generator _load_generator DEBUG Loading generator, side: a, is_display: True, batch_size: 14
11/02/2023 23:32:57 MainProcess _training generator __init__ DEBUG Initializing PreviewDataGenerator: (model: phaze_a, side: a, images: 1952 , batch_size: 14, config: {'centering': 'face', 'coverage': 87.5, 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'epsilon_exponent': -7, 'save_optimizer': 'exit', 'lr_finder_iterations': 1000, 'lr_finder_mode': 'set', 'lr_finder_strength': 'default', 'autoclip': False, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'nan_protection': True, 'convert_batchsize': 16, 'loss_function': 'ssim', 'loss_function_2': 'mse', 'loss_weight_2': 100, 'loss_function_3': None, 'loss_weight_3': 0, 'loss_function_4': None, 'loss_weight_4': 0, 'mask_loss_function': 'mse', 'eye_multiplier': 3, 'mouth_multiplier': 2, 'penalized_mask_loss': True, 'mask_type': 'bisenet-fp_face', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'preview_images': 14, 'mask_opacity': 30, 'mask_color': '#ff0000', 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
11/02/2023 23:32:57 MainProcess _training generator _get_output_sizes DEBUG side: a, model output shapes: [(None, 256, 256, 3), (None, 256, 256, 3)], output sizes: [256]
11/02/2023 23:32:57 MainProcess _training cache __init__ DEBUG Initializing: RingBuffer (batch_size: 14, image_shape: (256, 256, 6), buffer_size: 2, dtype: uint8
11/02/2023 23:32:57 MainProcess _training cache __init__ DEBUG Initialized: RingBuffer
11/02/2023 23:32:57 MainProcess _training generator __init__ DEBUG Initialized PreviewDataGenerator
11/02/2023 23:32:57 MainProcess _training generator minibatch_ab DEBUG do_shuffle: False
11/02/2023 23:32:57 MainProcess _training multithreading __init__ DEBUG Initializing BackgroundGenerator: (target: '_run_3', thread_count: 1)
11/02/2023 23:32:57 MainProcess _training multithreading __init__ DEBUG Initialized BackgroundGenerator: '_run_3'
11/02/2023 23:32:57 MainProcess _training multithreading start DEBUG Starting thread(s): '_run_3'
11/02/2023 23:32:57 MainProcess _training multithreading start DEBUG Starting thread 1 of 1: '_run_3'
11/02/2023 23:32:57 MainProcess _run_3 generator _minibatch DEBUG Loading minibatch generator: (image_count: 1952, do_shuffle: False)
11/02/2023 23:32:57 MainProcess _training multithreading start DEBUG Started all threads '_run_3': 1
11/02/2023 23:32:57 MainProcess _training generator set_timelapse_feed DEBUG Setting preview feed: (side: 'b', images: 1958)
11/02/2023 23:32:57 MainProcess _training generator _load_generator DEBUG Loading generator, side: b, is_display: True, batch_size: 14
11/02/2023 23:32:57 MainProcess _training generator __init__ DEBUG Initializing PreviewDataGenerator: (model: phaze_a, side: b, images: 1958 , batch_size: 14, config: {'centering': 'face', 'coverage': 87.5, 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'epsilon_exponent': -7, 'save_optimizer': 'exit', 'lr_finder_iterations': 1000, 'lr_finder_mode': 'set', 'lr_finder_strength': 'default', 'autoclip': False, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'nan_protection': True, 'convert_batchsize': 16, 'loss_function': 'ssim', 'loss_function_2': 'mse', 'loss_weight_2': 100, 'loss_function_3': None, 'loss_weight_3': 0, 'loss_function_4': None, 'loss_weight_4': 0, 'mask_loss_function': 'mse', 'eye_multiplier': 3, 'mouth_multiplier': 2, 'penalized_mask_loss': True, 'mask_type': 'bisenet-fp_face', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'preview_images': 14, 'mask_opacity': 30, 'mask_color': '#ff0000', 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
11/02/2023 23:32:57 MainProcess _training generator _get_output_sizes DEBUG side: b, model output shapes: [(None, 256, 256, 3), (None, 256, 256, 3)], output sizes: [256]
11/02/2023 23:32:57 MainProcess _training cache __init__ DEBUG Initializing: RingBuffer (batch_size: 14, image_shape: (256, 256, 6), buffer_size: 2, dtype: uint8
11/02/2023 23:32:57 MainProcess _training cache __init__ DEBUG Initialized: RingBuffer
11/02/2023 23:32:57 MainProcess _training generator __init__ DEBUG Initialized PreviewDataGenerator
11/02/2023 23:32:57 MainProcess _training generator minibatch_ab DEBUG do_shuffle: False
11/02/2023 23:32:57 MainProcess _training multithreading __init__ DEBUG Initializing BackgroundGenerator: (target: '_run_4', thread_count: 1)
11/02/2023 23:32:57 MainProcess _training multithreading __init__ DEBUG Initialized BackgroundGenerator: '_run_4'
11/02/2023 23:32:57 MainProcess _training multithreading start DEBUG Starting thread(s): '_run_4'
11/02/2023 23:32:57 MainProcess _training multithreading start DEBUG Starting thread 1 of 1: '_run_4'
11/02/2023 23:32:57 MainProcess _run_4 generator _minibatch DEBUG Loading minibatch generator: (image_count: 1958, do_shuffle: False)
11/02/2023 23:32:57 MainProcess _training multithreading start DEBUG Started all threads '_run_4': 1
11/02/2023 23:32:57 MainProcess _training generator set_timelapse_feed DEBUG Set time-lapse feed: {'a': <generator object BackgroundGenerator.iterator at 0x0000022863C04C80>, 'b': <generator object BackgroundGenerator.iterator at 0x0000022863C05BD0>}
11/02/2023 23:32:57 MainProcess _training _base _setup DEBUG Set up time-lapse
11/02/2023 23:32:57 MainProcess _training _base output_timelapse DEBUG Getting time-lapse samples
11/02/2023 23:32:57 MainProcess _training generator generate_preview DEBUG Generating preview (is_timelapse: True)
11/02/2023 23:32:57 MainProcess _training generator generate_preview DEBUG Generated samples: is_timelapse: True, images: {'feed': {'a': (14, 256, 256, 3), 'b': (14, 256, 256, 3)}, 'samples': {'a': (14, 292, 292, 3), 'b': (14, 292, 292, 3)}, 'sides': {'a': (14, 256, 256, 1), 'b': (14, 256, 256, 1)}}
11/02/2023 23:32:57 MainProcess _training generator compile_sample DEBUG Compiling samples: (side: 'a', samples: 14)
11/02/2023 23:32:57 MainProcess _training generator compile_sample DEBUG Compiling samples: (side: 'b', samples: 14)
11/02/2023 23:32:57 MainProcess _training generator compile_sample DEBUG Compiled Samples: {'a': [(14, 256, 256, 3), (14, 292, 292, 3), (14, 256, 256, 1)], 'b': [(14, 256, 256, 3), (14, 292, 292, 3), (14, 256, 256, 1)]}
11/02/2023 23:32:57 MainProcess _training _base output_timelapse DEBUG Got time-lapse samples: {'a': 3, 'b': 3}
11/02/2023 23:32:57 MainProcess _training _base show_sample DEBUG Showing sample
11/02/2023 23:32:57 MainProcess _training _base _resize_sample DEBUG Resizing sample: (side: 'a', sample.shape: (14, 256, 256, 3), target_size: 224, scale: 0.875)
11/02/2023 23:32:57 MainProcess _training _base _resize_sample DEBUG Resized sample: (side: 'a' shape: (14, 224, 224, 3))
11/02/2023 23:32:57 MainProcess _training _base _resize_sample DEBUG Resizing sample: (side: 'b', sample.shape: (14, 256, 256, 3), target_size: 224, scale: 0.875)
11/02/2023 23:32:57 MainProcess _training _base _resize_sample DEBUG Resized sample: (side: 'b' shape: (14, 224, 224, 3))
11/02/2023 23:32:57 MainProcess _training _base _get_predictions DEBUG Getting Predictions
11/02/2023 23:33:01 MainProcess _training _base _get_predictions DEBUG Returning predictions: {'a_a': (14, 256, 256, 3), 'b_b': (14, 256, 256, 3), 'a_b': (14, 256, 256, 3), 'b_a': (14, 256, 256, 3)}
11/02/2023 23:33:01 MainProcess _training _base _to_full_frame DEBUG side: 'a', number of sample arrays: 3, prediction.shapes: [(14, 256, 256, 3), (14, 256, 256, 3)])
11/02/2023 23:33:01 MainProcess _training _base _process_full DEBUG full_size: 292, prediction_size: 256, color: (0.0, 0.0, 1.0)
11/02/2023 23:33:01 MainProcess _training _base _process_full DEBUG Overlayed background. Shape: (14, 292, 292, 3)
11/02/2023 23:33:01 MainProcess _training _base _compile_masked DEBUG masked shapes: [(14, 256, 256, 3), (14, 256, 256, 3), (14, 256, 256, 3)]
11/02/2023 23:33:01 MainProcess _training _base _overlay_foreground DEBUG Overlayed foreground. Shape: (14, 292, 292, 3)
11/02/2023 23:33:01 MainProcess _training _base _overlay_foreground DEBUG Overlayed foreground. Shape: (14, 292, 292, 3)
11/02/2023 23:33:01 MainProcess _training _base _overlay_foreground DEBUG Overlayed foreground. Shape: (14, 292, 292, 3)
11/02/2023 23:33:01 MainProcess _training _base _get_headers DEBUG side: 'a', width: 292
11/02/2023 23:33:01 MainProcess _training _base _get_headers DEBUG height: 64, total_width: 876
11/02/2023 23:33:01 MainProcess _training _base _get_headers DEBUG texts: ['Original (A)', 'Original > Original', 'Original > Swap'], text_sizes: [(163, 20), (264, 20), (231, 20)], text_x: [64, 306, 614], text_y: 42
11/02/2023 23:33:01 MainProcess _training _base _get_headers DEBUG header_box.shape: (64, 876, 3)
11/02/2023 23:33:01 MainProcess _training _base _to_full_frame DEBUG side: 'b', number of sample arrays: 3, prediction.shapes: [(14, 256, 256, 3), (14, 256, 256, 3)])
11/02/2023 23:33:01 MainProcess _training _base _process_full DEBUG full_size: 292, prediction_size: 256, color: (0.0, 0.0, 1.0)
11/02/2023 23:33:01 MainProcess _training _base _process_full DEBUG Overlayed background. Shape: (14, 292, 292, 3)
11/02/2023 23:33:01 MainProcess _training _base _compile_masked DEBUG masked shapes: [(14, 256, 256, 3), (14, 256, 256, 3), (14, 256, 256, 3)]
11/02/2023 23:33:01 MainProcess _training _base _overlay_foreground DEBUG Overlayed foreground. Shape: (14, 292, 292, 3)
11/02/2023 23:33:01 MainProcess _training _base _overlay_foreground DEBUG Overlayed foreground. Shape: (14, 292, 292, 3)
11/02/2023 23:33:01 MainProcess _training _base _overlay_foreground DEBUG Overlayed foreground. Shape: (14, 292, 292, 3)
11/02/2023 23:33:01 MainProcess _training _base _get_headers DEBUG side: 'b', width: 292
11/02/2023 23:33:01 MainProcess _training _base _get_headers DEBUG height: 64, total_width: 876
11/02/2023 23:33:01 MainProcess _training _base _get_headers DEBUG texts: ['Swap (B)', 'Swap > Swap', 'Swap > Original'], text_sizes: [(133, 20), (198, 20), (231, 20)], text_x: [79, 339, 614], text_y: 42
11/02/2023 23:33:01 MainProcess _training _base _get_headers DEBUG header_box.shape: (64, 876, 3)
11/02/2023 23:33:01 MainProcess _training _base _duplicate_headers DEBUG side: a header.shape: (64, 876, 3)
11/02/2023 23:33:01 MainProcess _training _base _duplicate_headers DEBUG side: b header.shape: (64, 876, 3)
11/02/2023 23:33:01 MainProcess _training _base _stack_images DEBUG Stack images
11/02/2023 23:33:01 MainProcess _training _base get_transpose_axes DEBUG Even number of images to stack
11/02/2023 23:33:01 MainProcess _training _base _stack_images DEBUG Stacked images
11/02/2023 23:33:01 MainProcess _training _base _compile_preview DEBUG Compiled sample
11/02/2023 23:33:01 MainProcess _training _base output_timelapse DEBUG Created time-lapse: 'W:\model\timelapse\1698985981.jpg'
11/02/2023 23:33:01 MainProcess _training train _run_training_cycle DEBUG Saving (save_iterations: True, save_now: False) Iteration: (iteration: 1)
11/02/2023 23:33:01 MainProcess _training io save DEBUG Backing up and saving models
11/02/2023 23:33:01 MainProcess _training io _get_save_averages DEBUG Getting save averages
11/02/2023 23:33:01 MainProcess _training io _get_save_averages DEBUG Average losses since last save: [0.43416038155555725, 0.5303509831428528]
11/02/2023 23:33:01 MainProcess _training io _should_backup DEBUG Set initial save iteration loss average for 'a': 0.43416038155555725
11/02/2023 23:33:01 MainProcess _training io _should_backup DEBUG Set initial save iteration loss average for 'b': 0.5303509831428528
11/02/2023 23:33:01 MainProcess _training io _should_backup DEBUG Updated lowest historical save iteration averages from: {'a': 0.43416038155555725, 'b': 0.5303509831428528} to: {'a': 0.43416038155555725, 'b': 0.5303509831428528}
11/02/2023 23:33:01 MainProcess _training io _should_backup DEBUG Should backup: True
11/02/2023 23:33:02 MainProcess _training attrs create DEBUG Creating converter from 5 to 3
11/02/2023 23:33:02 MainProcess _training multithreading run DEBUG Error in thread (_training): Unable to serialize [2.0896919 2.1128857 2.1081853] to JSON. Unrecognized type <class 'tensorflow.python.framework.ops.EagerTensor'>.
11/02/2023 23:33:02 MainProcess MainThread train _monitor DEBUG Thread error detected
11/02/2023 23:33:02 MainProcess MainThread train _monitor DEBUG Closed Monitor
11/02/2023 23:33:02 MainProcess MainThread train _end_thread DEBUG Ending Training thread
11/02/2023 23:33:02 MainProcess MainThread train _end_thread CRITICAL Error caught! Exiting...
11/02/2023 23:33:02 MainProcess MainThread multithreading join DEBUG Joining Threads: '_training'
11/02/2023 23:33:02 MainProcess MainThread multithreading join DEBUG Joining Thread: '_training'
11/02/2023 23:33:02 MainProcess MainThread multithreading join ERROR Caught exception in thread: '_training'
Traceback (most recent call last):
File "C:\Users\foo\ai\faceswap\lib\cli\launcher.py", line 225, in execute_script
process.process()
File "C:\Users\foo\ai\faceswap\scripts\train.py", line 209, in process
self._end_thread(thread, err)
File "C:\Users\foo\ai\faceswap\scripts\train.py", line 249, in _end_thread
thread.join()
File "C:\Users\foo\ai\faceswap\lib\multithreading.py", line 224, in join
raise thread.err[1].with_traceback(thread.err[2])
File "C:\Users\foo\ai\faceswap\lib\multithreading.py", line 100, in run
self._target(*self._args, **self._kwargs)
File "C:\Users\foo\ai\faceswap\scripts\train.py", line 274, in _training
raise err
File "C:\Users\foo\ai\faceswap\scripts\train.py", line 264, in _training
self._run_training_cycle(model, trainer)
File "C:\Users\foo\ai\faceswap\scripts\train.py", line 366, in _run_training_cycle
model.io.save(is_exit=False)
File "C:\Users\foo\ai\faceswap\plugins\train\model\_base\io.py", line 203, in save
self._plugin.model.save(self.filename, include_optimizer=include_optimizer)
File "C:\Users\foo\AppData\Roaming\Python\Python310\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\ProgramData\anaconda3\envs\faceswapgui\lib\json\__init__.py", line 238, in dumps
**kw).encode(obj)
File "C:\ProgramData\anaconda3\envs\faceswapgui\lib\json\encoder.py", line 199, in encode
chunks = self.iterencode(o, _one_shot=True)
File "C:\ProgramData\anaconda3\envs\faceswapgui\lib\json\encoder.py", line 257, in iterencode
return _iterencode(o, 0)
TypeError: Unable to serialize [2.0896919 2.1128857 2.1081853] to JSON. Unrecognized type <class 'tensorflow.python.framework.ops.EagerTensor'>.
============ System Information ============
backend: nvidia
encoding: cp1252
git_branch: master
git_commits: 8e6c6c3 patch writer: Sort the json file by key
gpu_cuda: 11.8
gpu_cudnn: 8.9.5
gpu_devices: GPU_0: NVIDIA GeForce RTX 4090
gpu_devices_active: GPU_0
gpu_driver: 545.84
gpu_vram: GPU_0: 24564MB (678MB free)
os_machine: AMD64
os_platform: Windows-10-10.0.22621-SP0
os_release: 10
py_command: C:\Users\foo\ai\faceswap\faceswap.py train -A W:/fa -B W:/fb -m W:/model -t phaze-a -bs 8 -it 1000000 -D default -s 250 -ss 25000 -tia W:/fa -tib W:/fb -to W:/model/timelapse -L INFO -gui
py_conda_version: conda 23.9.0
py_implementation: CPython
py_version: 3.10.13
py_virtual_env: True
sys_cores: 32
sys_processor: Intel64 Family 6 Model 183 Stepping 1, GenuineIntel
sys_ram: Total: 130776MB, Available: 113851MB, Used: 16924MB, Free: 113851MB
=============== Pip Packages ===============
absl-py==2.0.0
astunparse==1.6.3
cachetools==5.3.1
certifi==2023.7.22
charset-normalizer==3.3.0
colorama @ file:///C:/b/abs_a9ozq0l032/croot/colorama_1672387194846/work
contourpy @ file:///C:/b/abs_d5rpy288vc/croots/recipe/contourpy_1663827418189/work
cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work
fastcluster @ file:///D:/bld/fastcluster_1695650232190/work
ffmpy @ file:///home/conda/feedstock_root/build_artifacts/ffmpy_1659474992694/work
flatbuffers==23.5.26
fonttools==4.25.0
gast==0.4.0
google-auth==2.23.3
google-auth-oauthlib==0.4.6
google-pasta==0.2.0
grpcio==1.59.0
h5py==3.10.0
idna==3.4
imageio @ file:///C:/b/abs_3eijmwdodc/croot/imageio_1695996500830/work
imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1694632425602/work
joblib @ file:///C:/b/abs_1anqjntpan/croot/joblib_1685113317150/work
keras==2.10.0
Keras-Preprocessing==1.1.2
kiwisolver @ file:///C:/b/abs_88mdhvtahm/croot/kiwisolver_1672387921783/work
libclang==16.0.6
Markdown==3.5
MarkupSafe==2.1.3
matplotlib @ file:///C:/b/abs_085jhivdha/croot/matplotlib-suite_1693812524572/work
mkl-fft @ file:///C:/b/abs_19i1y8ykas/croot/mkl_fft_1695058226480/work
mkl-random @ file:///C:/b/abs_edwkj1_o69/croot/mkl_random_1695059866750/work
mkl-service==2.4.0
munkres==1.1.4
numexpr @ file:///C:/b/abs_5fucrty5dc/croot/numexpr_1696515448831/work
numpy @ file:///C:/b/abs_9fu2cs2527/croot/numpy_and_numpy_base_1695830496596/work/dist/numpy-1.26.0-cp310-cp310-win_amd64.whl#sha256=11367989d61b64039738e0c68c95c6b797a41c4c75ec2147c0541b21163786eb
nvidia-ml-py @ file:///home/conda/feedstock_root/build_artifacts/nvidia-ml-py_1693425331741/work
oauthlib==3.2.2
opencv-python==4.8.1.78
opt-einsum==3.3.0
packaging @ file:///C:/b/abs_28t5mcoltc/croot/packaging_1693575224052/work
Pillow @ file:///C:/b/abs_153xikw91n/croot/pillow_1695134603563/work
ply==3.11
protobuf==3.19.6
psutil @ file:///C:/Windows/Temp/abs_b2c2fd7f-9fd5-4756-95ea-8aed74d0039flsd9qufz/croots/recipe/psutil_1656431277748/work
pyasn1==0.5.0
pyasn1-modules==0.3.0
pyparsing @ file:///C:/Users/BUILDE~1/AppData/Local/Temp/abs_7f_7lba6rl/croots/recipe/pyparsing_1661452540662/work
PyQt5==5.15.7
PyQt5-sip @ file:///C:/Windows/Temp/abs_d7gmd2jg8i/croots/recipe/pyqt-split_1659273064801/work/pyqt_sip
python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
pywin32==305.1
pywinpty @ file:///C:/ci_310/pywinpty_1644230983541/work/target/wheels/pywinpty-2.0.2-cp310-none-win_amd64.whl
requests==2.31.0
requests-oauthlib==1.3.1
rsa==4.9
scikit-learn @ file:///C:/b/abs_55olq_4gzc/croot/scikit-learn_1690978955123/work
scipy==1.11.3
sip @ file:///C:/Windows/Temp/abs_b8fxd17m2u/croots/recipe/sip_1659012372737/work
six @ file:///tmp/build/80754af9/six_1644875935023/work
tensorboard==2.10.1
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.1
tensorflow==2.10.0
tensorflow-estimator==2.10.0
tensorflow-io-gcs-filesystem==0.31.0
termcolor==2.3.0
threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work
toml @ file:///tmp/build/80754af9/toml_1616166611790/work
tornado @ file:///C:/b/abs_0cbrstidzg/croot/tornado_1696937003724/work
tqdm @ file:///C:/b/abs_f76j9hg7pv/croot/tqdm_1679561871187/work
typing_extensions==4.8.0
urllib3==2.0.6
Werkzeug==3.0.0
wrapt==1.15.0
============== Conda Packages ==============
# packages in environment at C:\ProgramData\anaconda3\envs\faceswapgui:
#
# Name Version Build Channel
absl-py 2.0.0 pypi_0 pypi
astunparse 1.6.3 pypi_0 pypi
blas 1.0 mkl
brotli 1.0.9 h2bbff1b_7
brotli-bin 1.0.9 h2bbff1b_7
bzip2 1.0.8 he774522_0
ca-certificates 2023.7.22 h56e8100_0 conda-forge
cachetools 5.3.1 pypi_0 pypi
certifi 2023.7.22 pypi_0 pypi
charset-normalizer 3.3.0 pypi_0 pypi
colorama 0.4.6 py310haa95532_0
contourpy 1.0.5 py310h59b6b97_0
cudatoolkit 11.8.0 hd77b12b_0
cudnn 8.9.2.26 cuda11_0
cycler 0.11.0 pyhd3eb1b0_0
fastcluster 1.2.6 py310hecd3228_3 conda-forge
ffmpeg 4.3.1 ha925a31_0 conda-forge
ffmpy 0.3.0 pyhb6f538c_0 conda-forge
flatbuffers 23.5.26 pypi_0 pypi
fonttools 4.25.0 pyhd3eb1b0_0
freetype 2.12.1 ha860e81_0
gast 0.4.0 pypi_0 pypi
giflib 5.2.1 h8cc25b3_3
git 2.40.1 haa95532_1
glib 2.69.1 h5dc1a3c_2
google-auth 2.23.3 pypi_0 pypi
google-auth-oauthlib 0.4.6 pypi_0 pypi
google-pasta 0.2.0 pypi_0 pypi
grpcio 1.59.0 pypi_0 pypi
h5py 3.10.0 pypi_0 pypi
icc_rt 2022.1.0 h6049295_2
icu 58.2 ha925a31_3
idna 3.4 pypi_0 pypi
imageio 2.31.4 py310haa95532_0
imageio-ffmpeg 0.4.9 pyhd8ed1ab_0 conda-forge
intel-openmp 2023.1.0 h59b6b97_46319
joblib 1.2.0 py310haa95532_0
jpeg 9e h2bbff1b_1
keras 2.10.0 pypi_0 pypi
keras-preprocessing 1.1.2 pypi_0 pypi
kiwisolver 1.4.4 py310hd77b12b_0
krb5 1.20.1 h5b6d351_0
lerc 3.0 hd77b12b_0
libbrotlicommon 1.0.9 h2bbff1b_7
libbrotlidec 1.0.9 h2bbff1b_7
libbrotlienc 1.0.9 h2bbff1b_7
libclang 16.0.6 pypi_0 pypi
libclang13 14.0.6 default_h8e68704_1
libdeflate 1.17 h2bbff1b_1
libffi 3.4.4 hd77b12b_0
libiconv 1.16 h2bbff1b_2
libpng 1.6.39 h8cc25b3_0
libpq 12.15 h906ac69_1
libtiff 4.5.1 hd77b12b_0
libwebp 1.3.2 hbc33d0d_0
libwebp-base 1.3.2 h2bbff1b_0
libxml2 2.10.4 h0ad7f3c_1
libxslt 1.1.37 h2bbff1b_1
libzlib 1.2.13 hcfcfb64_5 conda-forge
libzlib-wapi 1.2.13 hcfcfb64_5 conda-forge
lz4-c 1.9.4 h2bbff1b_0
markdown 3.5 pypi_0 pypi
markupsafe 2.1.3 pypi_0 pypi
matplotlib 3.7.2 py310haa95532_0
matplotlib-base 3.7.2 py310h4ed8f06_0
mkl 2023.1.0 h6b88ed4_46357
mkl-service 2.4.0 py310h2bbff1b_1
mkl_fft 1.3.8 py310h2bbff1b_0
mkl_random 1.2.4 py310h59b6b97_0
munkres 1.1.4 py_0
numexpr 2.8.7 py310h2cd9be0_0
numpy 1.26.0 py310h055cbcc_0
numpy-base 1.26.0 py310h65a83cf_0
nvidia-ml-py 12.535.108 pyhd8ed1ab_0 conda-forge
oauthlib 3.2.2 pypi_0 pypi
opencv-python 4.8.1.78 pypi_0 pypi
openssl 3.1.3 hcfcfb64_0 conda-forge
opt-einsum 3.3.0 pypi_0 pypi
packaging 23.1 py310haa95532_0
pcre 8.45 hd77b12b_0
pillow 9.4.0 py310hd77b12b_1
pip 23.2.1 py310haa95532_0
ply 3.11 py310haa95532_0
protobuf 3.19.6 pypi_0 pypi
psutil 5.9.0 py310h2bbff1b_0
pyasn1 0.5.0 pypi_0 pypi
pyasn1-modules 0.3.0 pypi_0 pypi
pyparsing 3.0.9 py310haa95532_0
pyqt 5.15.7 py310hd77b12b_0
pyqt5-sip 12.11.0 py310hd77b12b_0
python 3.10.13 he1021f5_0
python-dateutil 2.8.2 pyhd3eb1b0_0
python_abi 3.10 2_cp310 conda-forge
pywin32 305 py310h2bbff1b_0
pywinpty 2.0.2 py310h5da7b33_0
qt-main 5.15.2 h879a1e9_9
qt-webengine 5.15.9 h5bd16bc_7
qtwebkit 5.212 h2bbfb41_5
requests 2.31.0 pypi_0 pypi
requests-oauthlib 1.3.1 pypi_0 pypi
rsa 4.9 pypi_0 pypi
scikit-learn 1.3.0 py310h4ed8f06_0
scipy 1.11.3 py310h309d312_0
setuptools 68.0.0 py310haa95532_0
sip 6.6.2 py310hd77b12b_0
six 1.16.0 pyhd3eb1b0_1
sqlite 3.41.2 h2bbff1b_0
tbb 2021.8.0 h59b6b97_0
tensorboard 2.10.1 pypi_0 pypi
tensorboard-data-server 0.6.1 pypi_0 pypi
tensorboard-plugin-wit 1.8.1 pypi_0 pypi
tensorflow 2.10.1 pypi_0 pypi
tensorflow-estimator 2.10.0 pypi_0 pypi
tensorflow-io-gcs-filesystem 0.31.0 pypi_0 pypi
termcolor 2.3.0 pypi_0 pypi
threadpoolctl 2.2.0 pyh0d69192_0
tk 8.6.12 h2bbff1b_0
toml 0.10.2 pyhd3eb1b0_0
tornado 6.3.3 py310h2bbff1b_0
tqdm 4.65.0 py310h9909e9c_0
typing-extensions 4.8.0 pypi_0 pypi
tzdata 2023c h04d1e81_0
ucrt 10.0.22621.0 h57928b3_0 conda-forge
urllib3 2.0.6 pypi_0 pypi
vc 14.2 h21ff451_1
vc14_runtime 14.36.32532 hdcecf7f_17 conda-forge
vs2015_runtime 14.36.32532 h05e6639_17 conda-forge
werkzeug 3.0.0 pypi_0 pypi
wheel 0.41.2 py310haa95532_0
winpty 0.4.3 4
wrapt 1.15.0 pypi_0 pypi
xz 5.4.2 h8cc25b3_0
zlib 1.2.13 hcfcfb64_5 conda-forge
zlib-wapi 1.2.13 hcfcfb64_5 conda-forge
zstd 1.5.5 hd43e919_0
================= Configs ==================
--------- .faceswap ---------
backend: nvidia
--------- convert.ini ---------
[color.color_transfer]
clip: True
preserve_paper: True
[color.manual_balance]
colorspace: HSV
balance_1: 0.0
balance_2: 0.0
balance_3: 0.0
contrast: 0.0
brightness: 0.0
[color.match_hist]
threshold: 99.0
[mask.mask_blend]
type: normalized
kernel_size: 3
passes: 4
threshold: 4
erosion: 0.0
erosion_top: 0.0
erosion_bottom: 0.0
erosion_left: 0.0
erosion_right: 0.0
[scaling.sharpen]
method: None
amount: 150
radius: 0.3
threshold: 5.0
[writer.ffmpeg]
container: mp4
codec: libx264
crf: 23
preset: medium
tune: None
profile: auto
level: auto
skip_mux: False
[writer.gif]
fps: 25
loop: 0
palettesize: 256
subrectangles: False
[writer.opencv]
format: jpg
draw_transparent: False
separate_mask: False
jpg_quality: 90
png_compress_level: 3
[writer.patch]
start_index: 0
index_offset: 0
number_padding: 6
include_filename: True
face_index_location: before
origin: bottom-left
empty_frames: blank
json_output: False
separate_mask: False
bit_depth: 16
format: png
png_compress_level: 3
tiff_compression_method: lzw
[writer.pillow]
format: png
draw_transparent: False
separate_mask: False
optimize: False
gif_interlace: True
jpg_quality: 75
png_compress_level: 3
tif_compression: tiff_deflate
--------- extract.ini ---------
[global]
allow_growth: False
aligner_min_scale: 0.07
aligner_max_scale: 2.0
aligner_distance: 22.5
aligner_roll: 45.0
aligner_features: True
filter_refeed: True
save_filtered: False
realign_refeeds: True
filter_realign: True
[align.fan]
batch-size: 12
[detect.cv2_dnn]
confidence: 50
[detect.mtcnn]
minsize: 20
scalefactor: 0.709
batch-size: 8
cpu: True
threshold_1: 0.6
threshold_2: 0.7
threshold_3: 0.7
[detect.s3fd]
confidence: 70
batch-size: 4
[mask.bisenet_fp]
batch-size: 8
cpu: False
weights: faceswap
include_ears: False
include_hair: False
include_glasses: True
[mask.custom]
batch-size: 8
centering: face
fill: False
[mask.unet_dfl]
batch-size: 8
[mask.vgg_clear]
batch-size: 6
[mask.vgg_obstructed]
batch-size: 2
[recognition.vgg_face2]
batch-size: 16
cpu: False
--------- gui.ini ---------
[global]
fullscreen: False
tab: extract
options_panel_width: 30
console_panel_height: 20
icon_size: 14
font: default
font_size: 9
autosave_last_session: prompt
timeout: 120
auto_load_model_stats: True
--------- train.ini ---------
[global]
centering: face
coverage: 87.5
icnr_init: False
conv_aware_init: False
optimizer: adam
learning_rate: 5e-05
epsilon_exponent: -7
save_optimizer: exit
lr_finder_iterations: 1000
lr_finder_mode: set
lr_finder_strength: default
autoclip: False
reflect_padding: False
allow_growth: False
mixed_precision: False
nan_protection: True
convert_batchsize: 16
[global.loss]
loss_function: ssim
loss_function_2: mse
loss_weight_2: 100
loss_function_3: None
loss_weight_3: 0
loss_function_4: None
loss_weight_4: 0
mask_loss_function: mse
eye_multiplier: 3
mouth_multiplier: 2
penalized_mask_loss: True
mask_type: bisenet-fp_face
mask_blur_kernel: 3
mask_threshold: 4
learn_mask: False
[model.dfaker]
output_size: 128
[model.dfl_h128]
lowmem: False
[model.dfl_sae]
input_size: 128
architecture: df
autoencoder_dims: 0
encoder_dims: 42
decoder_dims: 21
multiscale_decoder: False
[model.dlight]
features: best
details: good
output_size: 256
[model.original]
lowmem: False
[model.phaze_a]
output_size: 256
shared_fc: none
enable_gblock: True
split_fc: True
split_gblock: False
split_decoders: False
enc_architecture: efficientnet_b4
enc_scaling: 60
enc_load_weights: True
bottleneck_type: dense
bottleneck_norm: none
bottleneck_size: 512
bottleneck_in_encoder: True
fc_depth: 1
fc_min_filters: 1280
fc_max_filters: 1280
fc_dimensions: 8
fc_filter_slope: -0.5
fc_dropout: 0.0
fc_upsampler: upsample2d
fc_upsamples: 1
fc_upsample_filters: 1280
fc_gblock_depth: 3
fc_gblock_min_nodes: 512
fc_gblock_max_nodes: 512
fc_gblock_filter_slope: -0.5
fc_gblock_dropout: 0.0
dec_upscale_method: resize_images
dec_upscales_in_fc: 0
dec_norm: none
dec_min_filters: 160
dec_max_filters: 640
dec_slope_mode: full
dec_filter_slope: -0.33
dec_res_blocks: 1
dec_output_kernel: 3
dec_gaussian: True
dec_skip_last_residual: False
freeze_layers: keras_encoder
load_layers: encoder
fs_original_depth: 4
fs_original_min_filters: 128
fs_original_max_filters: 1024
fs_original_use_alt: False
mobilenet_width: 1.0
mobilenet_depth: 1
mobilenet_dropout: 0.001
mobilenet_minimalistic: False
[model.realface]
input_size: 64
output_size: 128
dense_nodes: 1536
complexity_encoder: 128
complexity_decoder: 512
[model.unbalanced]
input_size: 128
lowmem: False
nodes: 1024
complexity_encoder: 128
complexity_decoder_a: 384
complexity_decoder_b: 512
[model.villain]
lowmem: False
[trainer.original]
preview_images: 14
mask_opacity: 30
mask_color: #ff0000
zoom_amount: 5
rotation_range: 10
shift_range: 5
flip_chance: 50
color_lightness: 30
color_ab: 8
color_clahe_chance: 50
color_clahe_max_size: 4