Page 1 of 1

plaidml.exceptions.Unknown: No enough memory for the current schedule: required 2163167232, available 1825361152

Posted: Thu Aug 20, 2020 2:15 pm
by garwooi

Hi Faceswap dev.
No enough memory for the current schedule: required 2163167232, available 1825361152.
My system has 12GB of memory.

Not sure what's went wrong, been update to the latest version.

Below was the failed log.


Code: Select all

08/20/2020 22:05:44 MainProcess     _training_0     multithreading  __init__                  DEBUG    Initializing BackgroundGenerator: (target: '_run', thread_count: 2)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  __init__                  DEBUG    Initialized BackgroundGenerator: '_run'
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread(s): '_run'
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread 1 of 2: '_run_0'
08/20/2020 22:05:44 MainProcess     _run_0          training_data   _minibatch                DEBUG    Loading minibatch generator: (image_count: 7557, side: 'a', do_shuffle: True)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread 2 of 2: '_run_1'
08/20/2020 22:05:44 MainProcess     _run_1          training_data   _minibatch                DEBUG    Loading minibatch generator: (image_count: 7557, side: 'a', do_shuffle: True)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Started all threads '_run': 2
08/20/2020 22:05:44 MainProcess     _training_0     _base           _load_generator           DEBUG    Loading generator
08/20/2020 22:05:44 MainProcess     _training_0     _base           _load_generator           DEBUG    input_size: 64, output_shapes: [(64, 64, 3)]
08/20/2020 22:05:44 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Requested coverage_ratio: 0.875
08/20/2020 22:05:44 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Final coverage_ratio: 0.875
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initializing TrainingDataGenerator: (model_input_size: 64, model_output_shapes: [(64, 64, 3)], coverage_ratio: 0.875, augment_color: True, no_flip: False, warp_to_landmarks: False, alignments: ['masks'], config: {'coverage': 87.5, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'penalized_mask_loss': True, 'loss_function': 'mae', 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initialized TrainingDataGenerator
08/20/2020 22:05:44 MainProcess     _training_0     training_data   minibatch_ab              DEBUG    Queue batches: (image_count: 1728, batchsize: 12, side: 'b', do_shuffle: True, is_preview, False, is_timelapse: False)
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initializing ImageAugmentation: (batchsize: 12, is_display: False, input_size: 64, output_shapes: [(64, 64, 3)], coverage_ratio: 0.875, config: {'coverage': 87.5, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'penalized_mask_loss': True, 'loss_function': 'mae', 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Output sizes: [64]
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initialized ImageAugmentation
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  __init__                  DEBUG    Initializing BackgroundGenerator: (target: '_run', thread_count: 2)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  __init__                  DEBUG    Initialized BackgroundGenerator: '_run'
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread(s): '_run'
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread 1 of 2: '_run_0'
08/20/2020 22:05:44 MainProcess     _run_0          training_data   _minibatch                DEBUG    Loading minibatch generator: (image_count: 1728, side: 'b', do_shuffle: True)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread 2 of 2: '_run_1'
08/20/2020 22:05:44 MainProcess     _run_1          training_data   _minibatch                DEBUG    Loading minibatch generator: (image_count: 1728, side: 'b', do_shuffle: True)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Started all threads '_run': 2
08/20/2020 22:05:44 MainProcess     _training_0     _base           _set_preview_feed         DEBUG    Setting preview feed: (side: 'a')
08/20/2020 22:05:44 MainProcess     _training_0     _base           _load_generator           DEBUG    Loading generator
08/20/2020 22:05:44 MainProcess     _training_0     _base           _load_generator           DEBUG    input_size: 64, output_shapes: [(64, 64, 3)]
08/20/2020 22:05:44 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Requested coverage_ratio: 0.875
08/20/2020 22:05:44 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Final coverage_ratio: 0.875
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initializing TrainingDataGenerator: (model_input_size: 64, model_output_shapes: [(64, 64, 3)], coverage_ratio: 0.875, augment_color: True, no_flip: False, warp_to_landmarks: False, alignments: ['masks'], config: {'coverage': 87.5, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'penalized_mask_loss': True, 'loss_function': 'mae', 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initialized TrainingDataGenerator
08/20/2020 22:05:44 MainProcess     _training_0     training_data   minibatch_ab              DEBUG    Queue batches: (image_count: 7557, batchsize: 14, side: 'a', do_shuffle: True, is_preview, True, is_timelapse: False)
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initializing ImageAugmentation: (batchsize: 14, is_display: True, input_size: 64, output_shapes: [(64, 64, 3)], coverage_ratio: 0.875, config: {'coverage': 87.5, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'penalized_mask_loss': True, 'loss_function': 'mae', 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Output sizes: [64]
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initialized ImageAugmentation
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  __init__                  DEBUG    Initializing BackgroundGenerator: (target: '_run', thread_count: 2)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  __init__                  DEBUG    Initialized BackgroundGenerator: '_run'
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread(s): '_run'
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread 1 of 2: '_run_0'
08/20/2020 22:05:44 MainProcess     _run_0          training_data   _minibatch                DEBUG    Loading minibatch generator: (image_count: 7557, side: 'a', do_shuffle: True)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread 2 of 2: '_run_1'
08/20/2020 22:05:44 MainProcess     _run_1          training_data   _minibatch                DEBUG    Loading minibatch generator: (image_count: 7557, side: 'a', do_shuffle: True)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Started all threads '_run': 2
08/20/2020 22:05:44 MainProcess     _training_0     _base           _set_preview_feed         DEBUG    Setting preview feed: (side: 'b')
08/20/2020 22:05:44 MainProcess     _training_0     _base           _load_generator           DEBUG    Loading generator
08/20/2020 22:05:44 MainProcess     _training_0     _base           _load_generator           DEBUG    input_size: 64, output_shapes: [(64, 64, 3)]
08/20/2020 22:05:44 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Requested coverage_ratio: 0.875
08/20/2020 22:05:44 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Final coverage_ratio: 0.875
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initializing TrainingDataGenerator: (model_input_size: 64, model_output_shapes: [(64, 64, 3)], coverage_ratio: 0.875, augment_color: True, no_flip: False, warp_to_landmarks: False, alignments: ['masks'], config: {'coverage': 87.5, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'penalized_mask_loss': True, 'loss_function': 'mae', 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initialized TrainingDataGenerator
08/20/2020 22:05:44 MainProcess     _training_0     training_data   minibatch_ab              DEBUG    Queue batches: (image_count: 1728, batchsize: 14, side: 'b', do_shuffle: True, is_preview, True, is_timelapse: False)
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initializing ImageAugmentation: (batchsize: 14, is_display: True, input_size: 64, output_shapes: [(64, 64, 3)], coverage_ratio: 0.875, config: {'coverage': 87.5, 'mask_type': 'extended', 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'penalized_mask_loss': True, 'loss_function': 'mae', 'icnr_init': False, 'conv_aware_init': False, 'optimizer': 'adam', 'learning_rate': 5e-05, 'reflect_padding': False, 'allow_growth': False, 'mixed_precision': False, 'preview_images': 14, 'zoom_amount': 5, 'rotation_range': 10, 'shift_range': 5, 'flip_chance': 50, 'color_lightness': 30, 'color_ab': 8, 'color_clahe_chance': 50, 'color_clahe_max_size': 4})
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Output sizes: [64]
08/20/2020 22:05:44 MainProcess     _training_0     training_data   __init__                  DEBUG    Initialized ImageAugmentation
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  __init__                  DEBUG    Initializing BackgroundGenerator: (target: '_run', thread_count: 2)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  __init__                  DEBUG    Initialized BackgroundGenerator: '_run'
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread(s): '_run'
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread 1 of 2: '_run_0'
08/20/2020 22:05:44 MainProcess     _run_0          training_data   _minibatch                DEBUG    Loading minibatch generator: (image_count: 1728, side: 'b', do_shuffle: True)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Starting thread 2 of 2: '_run_1'
08/20/2020 22:05:44 MainProcess     _run_1          training_data   _minibatch                DEBUG    Loading minibatch generator: (image_count: 1728, side: 'b', do_shuffle: True)
08/20/2020 22:05:44 MainProcess     _training_0     multithreading  start                     DEBUG    Started all threads '_run': 2
08/20/2020 22:05:44 MainProcess     _training_0     _base           _set_preview_feed         DEBUG    Set preview feed. Batchsize: 14
08/20/2020 22:05:44 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized _Feeder:
08/20/2020 22:05:44 MainProcess     _training_0     _base           _set_tensorboard          DEBUG    Enabling TensorBoard Logging
08/20/2020 22:05:44 MainProcess     _training_0     _base           _set_tensorboard          DEBUG    Setting up TensorBoard Logging
08/20/2020 22:05:45 MainProcess     _run_1          training_data   initialize                DEBUG    Initializing constants. training_size: 256
08/20/2020 22:05:45 MainProcess     _run_0          training_data   initialize                DEBUG    Initializing constants. training_size: 256
08/20/2020 22:05:45 MainProcess     _run_0          training_data   initialize                DEBUG    Initializing constants. training_size: 256
08/20/2020 22:05:45 MainProcess     _run_0          training_data   initialize                DEBUG    Initialized constants: {'clahe_base_contrast': 2, 'tgt_slices': slice(16, 240, None), 'warp_mapx': '[[[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]]', 'warp_mapy': '[[[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [253. 253. 253. ... 253. 253. 253.]\n  [254. 254. 254. ... 254. 254. 254.]\n  [255. 255. 255. ... 255. 255. 255.]]\n\n [[  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  ...\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]]]'}
08/20/2020 22:05:45 MainProcess     _run_1          training_data   initialize                DEBUG    Initialized constants: {'clahe_base_contrast': 2, 'tgt_slices': slice(16, 240, None), 'warp_mapx': '[[[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]]', 'warp_mapy': '[[[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [253. 253. 253. ... 253. 253. 253.]\n  [254. 254. 254. ... 254. 254. 254.]\n  [255. 255. 255. ... 255. 255. 255.]]\n\n [[  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  ...\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]]]'}
08/20/2020 22:05:45 MainProcess     _run_0          training_data   initialize                DEBUG    Initializing constants. training_size: 256
08/20/2020 22:05:45 MainProcess     _run_0          training_data   initialize                DEBUG    Initialized constants: {'clahe_base_contrast': 2, 'tgt_slices': slice(16, 240, None), 'warp_mapx': '[[[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]]', 'warp_mapy': '[[[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [253. 253. 253. ... 253. 253. 253.]\n  [254. 254. 254. ... 254. 254. 254.]\n  [255. 255. 255. ... 255. 255. 255.]]\n\n [[  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  ...\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]]]'}
08/20/2020 22:05:45 MainProcess     _run_0          training_data   initialize                DEBUG    Initialized constants: {'clahe_base_contrast': 2, 'tgt_slices': slice(16, 240, None), 'warp_mapx': '[[[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]\n\n [[ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]\n  [ 16.  72. 128. 184. 240.]]]', 'warp_mapy': '[[[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]\n\n [[ 16.  16.  16.  16.  16.]\n  [ 72.  72.  72.  72.  72.]\n  [128. 128. 128. 128. 128.]\n  [184. 184. 184. 184. 184.]\n  [240. 240. 240. 240. 240.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  [255   0]\n  [127   0]\n  [127 255]\n  [255 127]\n  [  0 127]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [253. 253. 253. ... 253. 253. 253.]\n  [254. 254. 254. ... 254. 254. 254.]\n  [255. 255. 255. ... 255. 255. 255.]]\n\n [[  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  ...\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]]]'}
08/20/2020 22:05:45 MainProcess     _training_0     _base           _set_tensorboard          VERBOSE  Enabled TensorBoard Logging
08/20/2020 22:05:45 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Requested coverage_ratio: 0.875
08/20/2020 22:05:45 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Final coverage_ratio: 0.875
08/20/2020 22:05:45 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing _Samples: model: '<plugins.train.model.original.Model object at 0x0000027C593453D0>', coverage_ratio: 0.875)
08/20/2020 22:05:45 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized _Samples
08/20/2020 22:05:45 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Requested coverage_ratio: 0.875
08/20/2020 22:05:45 MainProcess     _training_0     _base           coverage_ratio            DEBUG    Final coverage_ratio: 0.875
08/20/2020 22:05:45 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing _Timelapse: model: <plugins.train.model.original.Model object at 0x0000027C593453D0>, coverage_ratio: 0.875, image_count: 14, feeder: '<plugins.train.trainer._base._Feeder object at 0x0000027C579A6FD0>')
08/20/2020 22:05:45 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing _Samples: model: '<plugins.train.model.original.Model object at 0x0000027C593453D0>', coverage_ratio: 0.875)
08/20/2020 22:05:45 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized _Samples
08/20/2020 22:05:45 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized _Timelapse
08/20/2020 22:05:45 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized Trainer
08/20/2020 22:05:45 MainProcess     _training_0     train           _load_trainer             DEBUG    Loaded Trainer
08/20/2020 22:05:45 MainProcess     _training_0     train           _run_training_cycle       DEBUG    Running Training Cycle
08/20/2020 22:05:48 MainProcess     _training_0     library         _logger_callback          INFO     Analyzing Ops: 450 of 826 operations complete
08/20/2020 22:05:50 MainProcess     _training_0     library         _logger_callback          INFO     Analyzing Ops: 488 of 826 operations complete
08/20/2020 22:06:11 MainProcess     _training_0     multithreading  run                       DEBUG    Error in thread (_training_0): No enough memory for the current schedule: required 2163167232, available 1825361152
08/20/2020 22:06:12 MainProcess     MainThread      train           _monitor                  DEBUG    Thread error detected
08/20/2020 22:06:12 MainProcess     MainThread      train           _monitor                  DEBUG    Closed Monitor
08/20/2020 22:06:12 MainProcess     MainThread      train           _end_thread               DEBUG    Ending Training thread
08/20/2020 22:06:12 MainProcess     MainThread      train           _end_thread               CRITICAL Error caught! Exiting...
08/20/2020 22:06:12 MainProcess     MainThread      multithreading  join                      DEBUG    Joining Threads: '_training'
08/20/2020 22:06:12 MainProcess     MainThread      multithreading  join                      DEBUG    Joining Thread: '_training_0'
08/20/2020 22:06:12 MainProcess     MainThread      multithreading  join                      ERROR    Caught exception in thread: '_training_0'
Traceback (most recent call last):
  File "C:\Users\karho\faceswap\lib\cli\launcher.py", line 156, in execute_script
    process.process()
  File "C:\Users\karho\faceswap\scripts\train.py", line 165, in process
    self._end_thread(thread, err)
  File "C:\Users\karho\faceswap\scripts\train.py", line 205, in _end_thread
    thread.join()
  File "C:\Users\karho\faceswap\lib\multithreading.py", line 121, in join
    raise thread.err[1].with_traceback(thread.err[2])
  File "C:\Users\karho\faceswap\lib\multithreading.py", line 37, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\karho\faceswap\scripts\train.py", line 227, in _training
    raise err
  File "C:\Users\karho\faceswap\scripts\train.py", line 217, in _training
    self._run_training_cycle(model, trainer)
  File "C:\Users\karho\faceswap\scripts\train.py", line 298, in _run_training_cycle
    trainer.train_one_step(viewer, timelapse)
  File "C:\Users\karho\faceswap\plugins\train\trainer\_base.py", line 198, in train_one_step
    loss = self._model.model.train_on_batch(model_inputs, y=model_targets)
  File "C:\Users\karho\MiniConda3\envs\faceswap\lib\site-packages\keras\engine\training.py", line 1217, in train_on_batch
    outputs = self.train_function(ins)
  File "C:\Users\karho\MiniConda3\envs\faceswap\lib\site-packages\plaidml\keras\backend.py", line 189, in __call__
    self._invoker.invoke()
  File "C:\Users\karho\MiniConda3\envs\faceswap\lib\site-packages\plaidml\__init__.py", line 1475, in invoke
    return Invocation(self._ctx, self)
  File "C:\Users\karho\MiniConda3\envs\faceswap\lib\site-packages\plaidml\__init__.py", line 1484, in __init__
    self._as_parameter_ = _lib().plaidml_schedule_invocation(ctx, invoker)
  File "C:\Users\karho\MiniConda3\envs\faceswap\lib\site-packages\plaidml\__init__.py", line 777, in _check_err
    self.raise_last_status()
  File "C:\Users\karho\MiniConda3\envs\faceswap\lib\site-packages\plaidml\library.py", line 131, in raise_last_status
    raise self.last_status()
plaidml.exceptions.Unknown: No enough memory for the current schedule: required 2163167232, available 1825361152

============ System Information ============
encoding:            cp1252
git_branch:          Not Found
git_commits:         Not Found
gpu_cuda:            No global version found. Check Conda packages for Conda Cuda
gpu_cudnn:           No global version found. Check Conda packages for Conda cuDNN
gpu_devices:         GPU_0: Advanced Micro Devices, Inc. - Bonaire (experimental)
gpu_devices_active:  GPU_0
gpu_driver:          ['3110.7']
gpu_vram:            GPU_0: 2048MB
os_machine:          AMD64
os_platform:         Windows-10-10.0.19041-SP0
os_release:          10
py_command:          C:\Users\karho\faceswap\faceswap.py train -A C:/TD/A/A -ala C:/TD/A/a_alignments.fsa -B C:/TD/B/B -alb C:/TD/B/b_alignments.fsa -m C:/TD/3 -t original -bs 12 -it 760000 -s 250 -ss 25000 -tia C:/TD/A/A -tib C:/TD/B/B -to C:/TD/4 -ps 50 -L INFO -gui
py_conda_version:    conda 4.8.4
py_implementation:   CPython
py_version:          3.8.5
py_virtual_env:      True
sys_cores:           4
sys_processor:       Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
sys_ram:             Total: 12248MB, Available: 8103MB, Used: 4144MB, Free: 8103MB

=============== Pip Packages ===============
absl-py==0.9.0
astunparse==1.6.3
cachetools==4.1.1
certifi==2020.6.20
cffi==1.14.2
chardet==3.0.4
cycler==0.10.0
enum34==1.1.10
fastcluster==1.1.26
ffmpy==0.2.3
gast==0.3.3
google-auth==1.20.1
google-auth-oauthlib==0.4.1
google-pasta==0.2.0
grpcio==1.31.0
h5py==2.10.0
idna==2.10
imageio @ file:///tmp/build/80754af9/imageio_1594161405741/work
imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1589202782679/work
joblib @ file:///tmp/build/80754af9/joblib_1594236160679/work
Keras==2.2.4
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.2
kiwisolver==1.2.0
Markdown==3.2.2
matplotlib @ file:///C:/ci/matplotlib-base_1592837548929/work
mkl-fft==1.1.0
mkl-random==1.1.1
mkl-service==2.3.0
numpy @ file:///C:/ci/numpy_and_numpy_base_1596215850360/work
nvidia-ml-py3 @ git+https://github.com/deepfakes/nvidia-ml-py3.git@6fc29ac84b32bad877f078cb4a777c1548a00bf6
oauthlib==3.1.0
olefile==0.46
opencv-python==4.4.0.42
opt-einsum==3.3.0
pathlib==1.0.1
Pillow @ file:///C:/ci/pillow_1594298230227/work
plaidml==0.7.0
plaidml-keras==0.7.0
protobuf==3.13.0
psutil==5.7.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycparser==2.20
pyparsing==2.4.7
python-dateutil==2.8.1
pywin32==227
PyYAML==5.3.1
requests==2.24.0
requests-oauthlib==1.3.0
rsa==4.6
scikit-learn @ file:///C:/ci/scikit-learn_1592853510272/work
scipy==1.4.1
sip==4.19.13
six==1.15.0
tensorboard==2.2.2
tensorboard-plugin-wit==1.7.0
tensorflow==2.2.0
tensorflow-estimator==2.2.0
termcolor==1.1.0
threadpoolctl @ file:///tmp/tmp9twdgx9k/threadpoolctl-2.1.0-py3-none-any.whl
tornado==6.0.4
tqdm @ file:///tmp/build/80754af9/tqdm_1596810128862/work
urllib3==1.25.10
Werkzeug==1.0.1
wincertstore==0.2
wrapt==1.12.1

============== Conda Packages ==============
# packages in environment at C:\Users\karho\MiniConda3\envs\faceswap:
#
# Name                    Version                   Build  Channel
absl-py                   0.9.0                    pypi_0    pypi
astunparse                1.6.3                    pypi_0    pypi
blas                      1.0                         mkl  
ca-certificates 2020.6.24 0
cachetools 4.1.1 pypi_0 pypi certifi 2020.6.20 py38_0
cffi 1.14.2 pypi_0 pypi chardet 3.0.4 pypi_0 pypi cycler 0.10.0 py38_0
enum34 1.1.10 pypi_0 pypi fastcluster 1.1.26 py38hbe40bda_1 conda-forge ffmpeg 4.3.1 ha925a31_0 conda-forge ffmpy 0.2.3 pypi_0 pypi freetype 2.10.2 hd328e21_0
gast 0.3.3 pypi_0 pypi git 2.23.0 h6bb4b03_0
google-auth 1.20.1 pypi_0 pypi google-auth-oauthlib 0.4.1 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi grpcio 1.31.0 pypi_0 pypi h5py 2.10.0 pypi_0 pypi icc_rt 2019.0.0 h0cc432a_1
icu 58.2 ha925a31_3
idna 2.10 pypi_0 pypi imageio 2.9.0 py_0
imageio-ffmpeg 0.4.2 py_0 conda-forge intel-openmp 2020.1 216
joblib 0.16.0 py_0
jpeg 9b hb83a4c4_2
keras 2.2.4 pypi_0 pypi keras-applications 1.0.8 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.2.0 py38h74a9793_0
libpng 1.6.37 h2a8f88b_0
libtiff 4.1.0 h56a325e_1
lz4-c 1.9.2 h62dcd97_1
markdown 3.2.2 pypi_0 pypi matplotlib 3.2.2 0
matplotlib-base 3.2.2 py38h64f37c6_0
mkl 2020.1 216
mkl-service 2.3.0 py38hb782905_0
mkl_fft 1.1.0 py38h45dec08_0
mkl_random 1.1.1 py38h47e9c7a_0
numpy 1.19.1 py38h5510c5b_0
numpy-base 1.19.1 py38ha3acd2a_0
nvidia-ml-py3 7.352.1 pypi_0 pypi oauthlib 3.1.0 pypi_0 pypi olefile 0.46 py_0
opencv-python 4.4.0.42 pypi_0 pypi openssl 1.1.1g he774522_1
opt-einsum 3.3.0 pypi_0 pypi pathlib 1.0.1 py_1
pillow 7.2.0 py38hcc1f983_0
pip 20.2.2 py38_0
plaidml 0.7.0 pypi_0 pypi plaidml-keras 0.7.0 pypi_0 pypi protobuf 3.13.0 pypi_0 pypi psutil 5.7.0 py38he774522_0
pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.20 pypi_0 pypi pyparsing 2.4.7 py_0
pyqt 5.9.2 py38ha925a31_4
python 3.8.5 he1778fa_0
python-dateutil 2.8.1 py_0
python_abi 3.8 1_cp38 conda-forge pywin32 227 py38he774522_1
pyyaml 5.3.1 pypi_0 pypi qt 5.9.7 vc14h73c81de_0
requests 2.24.0 pypi_0 pypi requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.6 pypi_0 pypi scikit-learn 0.23.1 py38h25d0782_0
scipy 1.4.1 pypi_0 pypi setuptools 49.6.0 py38_0
sip 4.19.13 py38ha925a31_0
six 1.15.0 py_0
sqlite 3.32.3 h2a8f88b_0
tensorboard 2.2.2 pypi_0 pypi tensorboard-plugin-wit 1.7.0 pypi_0 pypi tensorflow 2.2.0 pypi_0 pypi tensorflow-estimator 2.2.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi threadpoolctl 2.1.0 pyh5ca1d4c_0
tk 8.6.10 he774522_0
tornado 6.0.4 py38he774522_1
tqdm 4.48.2 py_0
urllib3 1.25.10 pypi_0 pypi vc 14.1 h0510ff6_4
vs2015_runtime 14.16.27012 hf0eaf9b_3
werkzeug 1.0.1 pypi_0 pypi wheel 0.34.2 py38_0
wincertstore 0.2 py38_0
wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h62dcd97_0
zlib 1.2.11 h62dcd97_4
zstd 1.4.5 h04227a9_0 ================= Configs ================== --------- .faceswap --------- backend: amd --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 [scaling.sharpen] method: unsharp_mask amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto skip_mux: False [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: False [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 scalefactor: 0.709 batch-size: 8 [detect.s3fd] confidence: 70 batch-size: 4 [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] coverage: 87.5 mask_type: extended mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False penalized_mask_loss: True loss_function: mae icnr_init: False conv_aware_init: False optimizer: adam learning_rate: 5e-05 reflect_padding: False allow_growth: False mixed_precision: False [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4

Re: plaidml.exceptions.Unknown: No enough memory for the current schedule: required 2163167232, available 1825361152

Posted: Thu Aug 20, 2020 3:48 pm
by torzdf

This is referring to GPU Memory, not System Memory.

You have a 2GB GPU which may not be enough to run Faceswap (I haven't done extensive tests on the limits for AMD).

Try using the "Lightweight" model and lowering the batchsize to 4 or 2.


Re: plaidml.exceptions.Unknown: No enough memory for the current schedule: required 2163167232, available 1825361152

Posted: Sat Aug 22, 2020 12:37 am
by garwooi

Thanks alot torzdf..!
It works..yay..!!! :D :D :D :D