Very low EGs training

Training your model
Forum rules
Read the FAQs and search the forum before posting a new topic.

Please mark any answers that fixed your problems so others can find the solutions.
Locked
User avatar
Faildozer
Posts: 2
Joined: Sun Feb 16, 2020 1:08 pm

Very low EGs training

Post by Faildozer » Sun Feb 16, 2020 1:14 pm

Hello, im currently running some training and the EGs numbers i get seem to be very low compared to others people's numbers i've seen.

Image

edit: forgot to add using the Dlight model

Code: Select all

============ System Information ============
encoding:            cp1252
git_branch:          master
git_commits:         7024047 Merge branch 'staging'. e6a2795 lib.gui.stats - Skip sessions with data corruption. cf7cf82 Merge branch 'staging'. 4cb2b40 bugfix: lib.alignments - mask summary datatype
gpu_cuda:            No global version found. Check Conda packages for Conda Cuda
gpu_cudnn:           No global version found. Check Conda packages for Conda cuDNN
gpu_devices:         GPU_0: GeForce RTX 2080
gpu_devices_active:  GPU_0
gpu_driver:          442.19
gpu_vram:            GPU_0: 8192MB
os_machine:          AMD64
os_platform:         Windows-10-10.0.18362-SP0
os_release:          10
py_command:          j:\faceswap/faceswap.py gui
py_conda_version:    conda 4.8.2
py_implementation:   CPython
py_version:          3.7.6
py_virtual_env:      True
sys_cores:           12
sys_processor:       Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
sys_ram:             Total: 32684MB, Available: 20540MB, Used: 12144MB, Free: 20540MB

=============== Pip Packages ===============
absl-py==0.8.1
astor==0.8.0
certifi==2019.11.28
cloudpickle==1.3.0
cycler==0.10.0
cytoolz==0.10.1
dask==2.10.1
decorator==4.4.1
fastcluster==1.1.26
ffmpy==0.2.2
gast==0.2.2
google-pasta==0.1.8
grpcio==1.16.1
h5py==2.9.0
imageio==2.6.1
imageio-ffmpeg==0.3.0
joblib==0.14.1
Keras==2.2.4
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
Markdown==3.1.1
matplotlib==3.1.3
mkl-fft==1.0.15
mkl-random==1.1.0
mkl-service==2.3.0
networkx==2.4
numpy==1.17.4
nvidia-ml-py3==7.352.1
olefile==0.46
opencv-python==4.1.2.30
opt-einsum==3.1.0
pathlib==1.0.1
Pillow==6.0.0
protobuf==3.11.2
psutil==5.6.7
pyparsing==2.4.6
pyreadline==2.1
python-dateutil==2.8.1
pytz==2019.3
PyWavelets==1.1.1
pywin32==227
PyYAML==5.3
scikit-image==0.16.2
scikit-learn==0.22.1
scipy==1.4.1
six==1.14.0
tensorboard==2.0.0
tensorflow==1.15.0
tensorflow-estimator==1.15.1
termcolor==1.1.0
toolz==0.10.0
toposort==1.5
tornado==6.0.3
tqdm==4.42.1
Werkzeug==0.16.1
wincertstore==0.2
wrapt==1.11.2

============== Conda Packages ==============
# packages in environment at C:\Users\bever\MiniConda3\envs\faceswap:
#
# Name                    Version                   Build  Channel
_tflow_select             2.2.0                     eigen  
absl-py                   0.8.1                    py37_0  
astor                     0.8.0                    py37_0  
blas                      1.0                         mkl  
ca-certificates           2020.1.1                      0  
certifi                   2019.11.28               py37_0  
cloudpickle               1.3.0                      py_0  
cycler                    0.10.0                   py37_0  
cytoolz                   0.10.1           py37he774522_0  
dask-core                 2.10.1                     py_0  
decorator                 4.4.1                      py_0  
fastcluster               1.1.26           py37he350917_0    conda-forge
ffmpeg                    4.2                  h6538335_0    conda-forge
ffmpy                     0.2.2                    pypi_0    pypi
freetype                  2.9.1                ha9979f8_1  
gast                      0.2.2                    py37_0  
git                       2.23.0               h6bb4b03_0  
google-pasta              0.1.8                      py_0  
grpcio                    1.16.1           py37h351948d_1  
h5py                      2.9.0            py37h5e291fa_0  
hdf5                      1.10.4               h7ebc959_0  
icc_rt                    2019.0.0             h0cc432a_1  
icu                       58.2                 ha66f8fd_1  
imageio                   2.6.1                    py37_0  
imageio-ffmpeg            0.3.0                      py_0    conda-forge
intel-openmp              2020.0                      166  
joblib                    0.14.1                     py_0  
jpeg                      9b                   hb83a4c4_2  
keras                     2.2.4                         0  
keras-applications        1.0.8                      py_0  
keras-base                2.2.4                    py37_0  
keras-preprocessing       1.1.0                      py_1  
kiwisolver                1.1.0            py37ha925a31_0  
libpng                    1.6.37               h2a8f88b_0  
libprotobuf               3.11.2               h7bd577a_0  
libtiff                   4.1.0                h56a325e_0  
markdown                  3.1.1                    py37_0  
matplotlib                3.1.1            py37hc8f65d3_0  
matplotlib-base           3.1.3            py37h64f37c6_0  
mkl                       2020.0                      166  
mkl-service               2.3.0            py37hb782905_0  
mkl_fft                   1.0.15           py37h14836fe_0  
mkl_random                1.1.0            py37h675688f_0  
networkx                  2.4                        py_0  
numpy                     1.17.4           py37h4320e6b_0  
numpy-base                1.17.4           py37hc3f5095_0  
nvidia-ml-py3             7.352.1                  pypi_0    pypi
olefile                   0.46                     py37_0  
opencv-python             4.1.2.30                 pypi_0    pypi
openssl                   1.1.1d               he774522_4  
opt_einsum                3.1.0                      py_0  
pathlib                   1.0.1                    py37_1  
pillow                    6.2.1            py37hdc69c19_0  
pip                       20.0.2                   py37_1  
protobuf                  3.11.2           py37h33f27b4_0  
psutil                    5.6.7            py37he774522_0  
pyparsing                 2.4.6                      py_0  
pyqt                      5.9.2            py37h6538335_2  
pyreadline                2.1                      py37_1  
python                    3.7.6                h60c2a47_2  
python-dateutil           2.8.1                      py_0  
pytz                      2019.3                     py_0  
pywavelets                1.1.1            py37he774522_0  
pywin32                   227              py37he774522_1  
pyyaml                    5.3              py37he774522_0  
qt                        5.9.7            vc14h73c81de_0  
scikit-image              0.16.2           py37h47e9c7a_0  
scikit-learn              0.22.1           py37h6288b17_0  
scipy                     1.4.1            py37h9439919_0  
setuptools                45.2.0                   py37_0  
sip                       4.19.8           py37h6538335_0  
six                       1.14.0                   py37_0  
sqlite                    3.31.1               he774522_0  
tensorboard               2.0.0              pyhb38c66f_1  
tensorflow                1.15.0          eigen_py37h9f89a44_0  
tensorflow-base           1.15.0          eigen_py37h07d2309_0  
tensorflow-estimator      1.15.1             pyh2649769_0  
termcolor                 1.1.0                    py37_1  
tk                        8.6.8                hfa6e2cd_0  
toolz                     0.10.0                     py_0  
toposort                  1.5                        py_3    conda-forge
tornado                   6.0.3            py37he774522_3  
tqdm                      4.42.1                     py_0  
vc                        14.1                 h0510ff6_4  
vs2015_runtime            14.16.27012          hf0eaf9b_1  
werkzeug                  0.16.1                     py_0  
wheel                     0.34.2                   py37_0  
wincertstore              0.2                      py37_0  
wrapt                     1.11.2           py37he774522_0  
xz                        5.2.4                h2fa13f4_4  
yaml                      0.1.7                hc54c509_2  
zlib                      1.2.11               h62dcd97_3  
zstd                      1.3.7                h508b16e_0  

================= Configs ==================
--------- .faceswap ---------
backend:                  nvidia

--------- convert.ini ---------

[color.color_transfer]
clip:                     True
preserve_paper:           True

[color.manual_balance]
colorspace:               HSV
balance_1:                0.0
balance_2:                0.0
balance_3:                0.0
contrast:                 0.0
brightness:               0.0

[color.match_hist]
threshold:                99.0

[mask.box_blend]
type:                     gaussian
distance:                 11.0
radius:                   5.0
passes:                   1

[mask.mask_blend]
type:                     normalized
kernel_size:              3
passes:                   4
threshold:                4
erosion:                  0.0

[scaling.sharpen]
method:                   unsharp_mask
amount:                   150
radius:                   0.3
threshold:                5.0

[writer.ffmpeg]
container:                mp4
codec:                    libx264
crf:                      23
preset:                   medium
tune:                     none
profile:                  auto
level:                    auto

[writer.gif]
fps:                      25
loop:                     0
palettesize:              256
subrectangles:            False

[writer.opencv]
format:                   png
draw_transparent:         False
jpg_quality:              75
png_compress_level:       3

[writer.pillow]
format:                   png
draw_transparent:         False
optimize:                 False
gif_interlace:            True
jpg_quality:              75
png_compress_level:       3
tif_compression:          tiff_deflate

--------- extract.ini ---------

[global]
allow_growth:             False

[align.fan]
batch-size:               64

[detect.cv2_dnn]
confidence:               50

[detect.mtcnn]
minsize:                  20
threshold_1:              0.6
threshold_2:              0.7
threshold_3:              0.7
scalefactor:              0.709
batch-size:               8

[detect.s3fd]
confidence:               70
batch-size:               4

[mask.unet_dfl]
batch-size:               12

[mask.vgg_clear]
batch-size:               12

[mask.vgg_obstructed]
batch-size:               12

--------- gui.ini ---------

[global]
fullscreen:               False
tab:                      extract
options_panel_width:      30
console_panel_height:     20
icon_size:                14
font:                     default
font_size:                9
autosave_last_session:    prompt
timeout:                  120
auto_load_model_stats:    True

--------- train.ini ---------

[global]
coverage:                 68.75
mask_type:                extended
mask_blur_kernel:         3
mask_threshold:           4
learn_mask:               False
icnr_init:                False
conv_aware_init:          False
subpixel_upscaling:       False
reflect_padding:          False
penalized_mask_loss:      True
loss_function:            mae
learning_rate:            5e-05

[model.dfl_h128]
lowmem:                   False

[model.dfl_sae]
input_size:               128
clipnorm:                 True
architecture:             df
autoencoder_dims:         0
encoder_dims:             42
decoder_dims:             21
multiscale_decoder:       False

[model.dlight]
features:                 fair
details:                  good
output_size:              128

[model.original]
lowmem:                   False

[model.realface]
input_size:               64
output_size:              128
dense_nodes:              1536
complexity_encoder:       128
complexity_decoder:       512

[model.unbalanced]
input_size:               128
lowmem:                   False
clipnorm:                 True
nodes:                    1024
complexity_encoder:       128
complexity_decoder_a:     384
complexity_decoder_b:     512

[model.villain]
lowmem:                   False

[trainer.original]
preview_images:           14
zoom_amount:              5
rotation_range:           10
shift_range:              5
flip_chance:              50
color_lightness:          30
color_ab:                 8
color_clahe_chance:       50
color_clahe_max_size:     4

any ideas?

User avatar
deephomage
Posts: 23
Joined: Fri Jul 12, 2019 6:09 pm
Has thanked: 2 times
Been thanked: 5 times

Re: Very low EGs training

Post by deephomage » Sun Feb 16, 2020 5:24 pm

Your EGs are low because you're training with the CPU version of tensorflow rather than the GPU version, tensorflow-gpu. In your faceswap environment:

conda install tensorflow-gpu==1.15

Alternatively, delete the faceswap folder and run the installer again and choose Nvidia.

User avatar
Faildozer
Posts: 2
Joined: Sun Feb 16, 2020 1:08 pm

Re: Very low EGs training

Post by Faildozer » Sun Feb 16, 2020 5:44 pm

I suspected that, i've installed it and made sure i picked nvidia 3 times, very strange, I'll try the command.

edit: YES! FINALLY!

this got me on the right path

Code: Select all

conda activate faceswap
//set the right env
conda install tensorflow-gpu==1.15
//installs tf gpu in the faceswap env
this is what i did and it it fixed it for me, maybe it will help someone else. tf gpu appeared to be installed in the conda folder but not in the env for some reason, my EGs has gone from 2 to 78, very happy.

Locked