It said unexpected crash and I dont know what to do Anyone can help me please??

If training is failing to start, and you are not receiving an error message telling you what to do, tell us about it here


Forum rules

Read the FAQs and search the forum before posting a new topic.

This forum is for reporting errors with the Training process. If you want to get tips, or better understand the Training process, then you should look in the Training Discussion forum.

Please mark any answers that fixed your problems so others can find the solutions.

Locked
User avatar
Torres
Posts: 1
Joined: Mon Feb 17, 2020 12:50 pm
Answers: 0

It said unexpected crash and I dont know what to do Anyone can help me please??

Post by Torres »

It said unexpected error and it said I must have crash report and I think I cant upload the file here so I copy and paste the text

Code: Select all

02/17/2020 20:53:17 MainProcess     _run_1          training_data   initialize                DEBUG    Initialized constants: {'clahe_base_contrast': 2, 'tgt_slices': slice(20, 236, None), 'warp_mapx': '[[[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n ...\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]]', 'warp_mapy': '[[[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n ...\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n ...\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [253. 253. 253. ... 253. 253. 253.]\n  [254. 254. 254. ... 254. 254. 254.]\n  [255. 255. 255. ... 255. 255. 255.]]\n\n [[  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  ...\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]]]'}
02/17/2020 20:53:17 MainProcess     _run_0          training_data   initialize                DEBUG    Initialized constants: {'clahe_base_contrast': 2, 'tgt_slices': slice(20, 236, None), 'warp_mapx': '[[[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n ...\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]]', 'warp_mapy': '[[[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n ...\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n ...\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [253. 253. 253. ... 253. 253. 253.]\n  [254. 254. 254. ... 254. 254. 254.]\n  [255. 255. 255. ... 255. 255. 255.]]\n\n [[  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  ...\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]]]'}
02/17/2020 20:53:17 MainProcess     _run_1          training_data   initialize                DEBUG    Initialized constants: {'clahe_base_contrast': 2, 'tgt_slices': slice(20, 236, None), 'warp_mapx': '[[[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n ...\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]]', 'warp_mapy': '[[[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n ...\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n ...\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [253. 253. 253. ... 253. 253. 253.]\n  [254. 254. 254. ... 254. 254. 254.]\n  [255. 255. 255. ... 255. 255. 255.]]\n\n [[  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  ...\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]]]'}
02/17/2020 20:53:17 MainProcess     _run_0          training_data   initialize                DEBUG    Initialized constants: {'clahe_base_contrast': 2, 'tgt_slices': slice(20, 236, None), 'warp_mapx': '[[[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n ...\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]\n\n [[ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]\n  [ 20.  74. 128. 182. 236.]]]', 'warp_mapy': '[[[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n ...\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]\n\n [[ 20.  20.  20.  20.  20.]\n  [ 74.  74.  74.  74.  74.]\n  [128. 128. 128. 128. 128.]\n  [182. 182. 182. 182. 182.]\n  [236. 236. 236. 236. 236.]]]', 'warp_pad': 80, 'warp_slices': slice(8, -8, None), 'warp_lm_edge_anchors': '[[[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n ...\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]\n\n [[  0   0]\n  [  0 255]\n  [255 255]\n  ...\n  [127 255]\n  [255 127]\n  [  0 127]]]', 'warp_lm_grids': '[[[  0.   0.   0. ...   0.   0.   0.]\n  [  1.   1.   1. ...   1.   1.   1.]\n  [  2.   2.   2. ...   2.   2.   2.]\n  ...\n  [253. 253. 253. ... 253. 253. 253.]\n  [254. 254. 254. ... 254. 254. 254.]\n  [255. 255. 255. ... 255. 255. 255.]]\n\n [[  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  ...\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]\n  [  0.   1.   2. ... 253. 254. 255.]]]'}
02/17/2020 20:53:18 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From C:\Users\choyt\MiniConda3\envs\faceswap\lib\site-packages\keras\backend\tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead.\n
02/17/2020 20:53:18 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From C:\Users\choyt\MiniConda3\envs\faceswap\lib\site-packages\keras\backend\tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.\n
02/17/2020 20:53:24 MainProcess     _training_0     _base           generate_preview          DEBUG    Generating preview
02/17/2020 20:53:24 MainProcess     _training_0     _base           largest_face_index        DEBUG    0
02/17/2020 20:53:24 MainProcess     _training_0     _base           compile_sample            DEBUG    Compiling samples: (side: 'a', samples: 14)
02/17/2020 20:53:27 MainProcess     _training_0     _base           generate_preview          DEBUG    Generating preview
02/17/2020 20:53:27 MainProcess     _training_0     _base           largest_face_index        DEBUG    0
02/17/2020 20:53:27 MainProcess     _training_0     _base           compile_sample            DEBUG    Compiling samples: (side: 'b', samples: 14)
02/17/2020 20:53:27 MainProcess     _training_0     _base           show_sample               DEBUG    Showing sample
02/17/2020 20:53:27 MainProcess     _training_0     _base           _get_predictions          DEBUG    Getting Predictions
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_predictions          DEBUG    Returning predictions: {'a_a': (14, 64, 64, 3), 'b_a': (14, 64, 64, 3), 'a_b': (14, 64, 64, 3), 'b_b': (14, 64, 64, 3)}
02/17/2020 20:53:28 MainProcess     _training_0     _base           _to_full_frame            DEBUG    side: 'a', number of sample arrays: 3, prediction.shapes: [(14, 64, 64, 3), (14, 64, 64, 3)])
02/17/2020 20:53:28 MainProcess     _training_0     _base           _frame_overlay            DEBUG    full_size: 256, target_size: 216, color: (0, 0, 255)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _frame_overlay            DEBUG    Overlayed background. Shape: (14, 256, 256, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'a', sample.shape: (14, 64, 64, 3), target_size: 216, scale: 3.375)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'a' shape: (14, 216, 216, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'a', sample.shape: (14, 64, 64, 3), target_size: 216, scale: 3.375)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'a' shape: (14, 216, 216, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'a', sample.shape: (14, 64, 64, 3), target_size: 216, scale: 3.375)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'a' shape: (14, 216, 216, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _overlay_foreground       DEBUG    Overlayed foreground. Shape: (14, 256, 256, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _overlay_foreground       DEBUG    Overlayed foreground. Shape: (14, 256, 256, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _overlay_foreground       DEBUG    Overlayed foreground. Shape: (14, 256, 256, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'a', sample.shape: (14, 256, 256, 3), target_size: 128, scale: 0.5)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'a' shape: (14, 128, 128, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'a', sample.shape: (14, 256, 256, 3), target_size: 128, scale: 0.5)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'a' shape: (14, 128, 128, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'a', sample.shape: (14, 256, 256, 3), target_size: 128, scale: 0.5)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'a' shape: (14, 128, 128, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_headers              DEBUG    side: 'a', width: 128
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_headers              DEBUG    height: 32, total_width: 384
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_headers              DEBUG    texts: ['Original (A)', 'Original > Original', 'Original > Swap'], text_sizes: [(72, 9), (116, 9), (102, 9)], text_x: [28, 134, 269], text_y: 20
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_headers              DEBUG    header_box.shape: (32, 384, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _to_full_frame            DEBUG    side: 'b', number of sample arrays: 3, prediction.shapes: [(14, 64, 64, 3), (14, 64, 64, 3)])
02/17/2020 20:53:28 MainProcess     _training_0     _base           _frame_overlay            DEBUG    full_size: 256, target_size: 216, color: (0, 0, 255)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _frame_overlay            DEBUG    Overlayed background. Shape: (14, 256, 256, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'b', sample.shape: (14, 64, 64, 3), target_size: 216, scale: 3.375)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'b' shape: (14, 216, 216, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'b', sample.shape: (14, 64, 64, 3), target_size: 216, scale: 3.375)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'b' shape: (14, 216, 216, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'b', sample.shape: (14, 64, 64, 3), target_size: 216, scale: 3.375)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'b' shape: (14, 216, 216, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _overlay_foreground       DEBUG    Overlayed foreground. Shape: (14, 256, 256, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _overlay_foreground       DEBUG    Overlayed foreground. Shape: (14, 256, 256, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _overlay_foreground       DEBUG    Overlayed foreground. Shape: (14, 256, 256, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'b', sample.shape: (14, 256, 256, 3), target_size: 128, scale: 0.5)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'b' shape: (14, 128, 128, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'b', sample.shape: (14, 256, 256, 3), target_size: 128, scale: 0.5)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'b' shape: (14, 128, 128, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resizing sample: (side: 'b', sample.shape: (14, 256, 256, 3), target_size: 128, scale: 0.5)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _resize_sample            DEBUG    Resized sample: (side: 'b' shape: (14, 128, 128, 3))
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_headers              DEBUG    side: 'b', width: 128
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_headers              DEBUG    height: 32, total_width: 384
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_headers              DEBUG    texts: ['Swap (B)', 'Swap > Swap', 'Swap > Original'], text_sizes: [(59, 9), (87, 9), (102, 9)], text_x: [34, 148, 269], text_y: 20
02/17/2020 20:53:28 MainProcess     _training_0     _base           _get_headers              DEBUG    header_box.shape: (32, 384, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _duplicate_headers        DEBUG    side: a header.shape: (32, 384, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _duplicate_headers        DEBUG    side: b header.shape: (32, 384, 3)
02/17/2020 20:53:28 MainProcess     _training_0     _base           _stack_images             DEBUG    Stack images
02/17/2020 20:53:28 MainProcess     _training_0     _base           get_transpose_axes        DEBUG    Even number of images to stack
02/17/2020 20:53:28 MainProcess     _training_0     _base           _stack_images             DEBUG    Stacked images
02/17/2020 20:53:28 MainProcess     _training_0     _base           show_sample               DEBUG    Compiled sample
02/17/2020 20:53:28 MainProcess     _training_0     _base           save_models               DEBUG    Backing up and saving models
02/17/2020 20:53:28 MainProcess     _training_0     _base           get_save_averages         DEBUG    Getting save averages
02/17/2020 20:53:28 MainProcess     _training_0     _base           get_save_averages         DEBUG    Average losses since last save: {'a': 0.31185588240623474, 'b': 0.18341457843780518}
02/17/2020 20:53:28 MainProcess     _training_0     _base           should_backup             DEBUG    Setting initial save iteration loss average for 'a': 0.31185588240623474
02/17/2020 20:53:28 MainProcess     _training_0     _base           should_backup             DEBUG    Setting initial save iteration loss average for 'b': 0.18341457843780518
02/17/2020 20:53:28 MainProcess     _training_0     _base           should_backup             DEBUG    Lowest historical save iteration loss average: {'a': 0.31185588240623474, 'b': 0.18341457843780518}
02/17/2020 20:53:28 MainProcess     _training_0     _base           should_backup             DEBUG    Updating lowest save iteration average for 'a': 0.31185588240623474
02/17/2020 20:53:28 MainProcess     _training_0     _base           should_backup             DEBUG    Updating lowest save iteration average for 'b': 0.18341457843780518
02/17/2020 20:53:28 MainProcess     _training_0     _base           should_backup             DEBUG    Backing up: True
02/17/2020 20:53:28 MainProcess     _training_0     _base           save_models               INFO     Backing up models...
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_0 backup_restore  backup_model              VERBOSE  Backing up: 'D:\Program\Fake\Model\original_decoder_A.h5' to 'D:\Program\Fake\Model\original_decoder_A.h5.bk'
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_0 _base           save                      DEBUG    Saving model: 'D:\Program\Fake\Model\original_decoder_A.h5'
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_1 backup_restore  backup_model              VERBOSE  Backing up: 'D:\Program\Fake\Model\original_decoder_B.h5' to 'D:\Program\Fake\Model\original_decoder_B.h5.bk'
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_1 _base           save                      DEBUG    Saving model: 'D:\Program\Fake\Model\original_decoder_B.h5'
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_2 backup_restore  backup_model              VERBOSE  Backing up: 'D:\Program\Fake\Model\original_encoder.h5' to 'D:\Program\Fake\Model\original_encoder.h5.bk'
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_2 _base           save                      DEBUG    Saving model: 'D:\Program\Fake\Model\original_encoder.h5'
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_3 _base           save                      DEBUG    Saving State
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_3 backup_restore  backup_model              VERBOSE  Backing up: 'D:\Program\Fake\Model\original_state.json' to 'D:\Program\Fake\Model\original_state.json.bk'
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_3 serializer      save                      DEBUG    filename: D:\Program\Fake\Model\original_state.json, data type: <class 'dict'>
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_3 serializer      _check_extension          DEBUG    Original filename: 'D:\Program\Fake\Model\original_state.json', final filename: 'D:\Program\Fake\Model\original_state.json'
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_3 serializer      marshal                   DEBUG    data type: <class 'dict'>
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_3 serializer      marshal                   DEBUG    returned data type: <class 'bytes'>
02/17/2020 20:53:28 MainProcess     ThreadPoolExecutor-16_3 _base           save                      DEBUG    Saved State
02/17/2020 20:53:29 MainProcess     _training_0     _base           save_models               INFO     [Saved models] - Average since last save: face_loss_A: 0.31186, face_loss_B: 0.18341
02/17/2020 20:53:31 MainProcess     _run_1          multithreading  run                       DEBUG    Error in thread (_run_1): tuple index out of range
02/17/2020 20:53:31 MainProcess     _training_0     multithreading  check_and_raise_error     DEBUG    Thread error caught: [(<class 'IndexError'>, IndexError('tuple index out of range'), <traceback object at 0x000001C05CAEE888>)]
02/17/2020 20:53:31 MainProcess     _training_0     multithreading  run                       DEBUG    Error in thread (_training_0): tuple index out of range
02/17/2020 20:53:31 MainProcess     _run_0          multithreading  run                       DEBUG    Error in thread (_run_0): tuple index out of range
02/17/2020 20:53:31 MainProcess     MainThread      train           _monitor                  DEBUG    Thread error detected
02/17/2020 20:53:31 MainProcess     MainThread      train           _monitor                  DEBUG    Closed Monitor
02/17/2020 20:53:31 MainProcess     MainThread      train           _end_thread               DEBUG    Ending Training thread
02/17/2020 20:53:31 MainProcess     MainThread      train           _end_thread               CRITICAL Error caught! Exiting...
02/17/2020 20:53:31 MainProcess     MainThread      multithreading  join                      DEBUG    Joining Threads: '_training'
02/17/2020 20:53:31 MainProcess     MainThread      multithreading  join                      DEBUG    Joining Thread: '_training_0'
02/17/2020 20:53:31 MainProcess     MainThread      multithreading  join                      ERROR    Caught exception in thread: '_training_0'
Traceback (most recent call last):
  File "C:\Users\choyt\faceswap\lib\cli.py", line 128, in execute_script
    process.process()
  File "C:\Users\choyt\faceswap\scripts\train.py", line 159, in process
    self._end_thread(thread, err)
  File "C:\Users\choyt\faceswap\scripts\train.py", line 199, in _end_thread
    thread.join()
  File "C:\Users\choyt\faceswap\lib\multithreading.py", line 121, in join
    raise thread.err[1].with_traceback(thread.err[2])
  File "C:\Users\choyt\faceswap\lib\multithreading.py", line 37, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\choyt\faceswap\scripts\train.py", line 224, in _training
    raise err
  File "C:\Users\choyt\faceswap\scripts\train.py", line 214, in _training
    self._run_training_cycle(model, trainer)
  File "C:\Users\choyt\faceswap\scripts\train.py", line 303, in _run_training_cycle
    trainer.train_one_step(viewer, timelapse)
  File "C:\Users\choyt\faceswap\plugins\train\trainer\_base.py", line 316, in train_one_step
    raise err
  File "C:\Users\choyt\faceswap\plugins\train\trainer\_base.py", line 283, in train_one_step
    loss[side] = batcher.train_one_batch()
  File "C:\Users\choyt\faceswap\plugins\train\trainer\_base.py", line 422, in train_one_batch
    model_inputs, model_targets = self._get_next()
  File "C:\Users\choyt\faceswap\plugins\train\trainer\_base.py", line 452, in _get_next
    batch = next(self._feed)
  File "C:\Users\choyt\faceswap\lib\multithreading.py", line 156, in iterator
    self.check_and_raise_error()
  File "C:\Users\choyt\faceswap\lib\multithreading.py", line 84, in check_and_raise_error
    raise error[1].with_traceback(error[2])
  File "C:\Users\choyt\faceswap\lib\multithreading.py", line 37, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\choyt\faceswap\lib\multithreading.py", line 145, in _run
    for item in self.generator(*self._gen_args, **self._gen_kwargs):
  File "C:\Users\choyt\faceswap\lib\training_data.py", line 189, in _minibatch
    yield self._process_batch(img_paths, side)
  File "C:\Users\choyt\faceswap\lib\training_data.py", line 216, in _process_batch
    batch[..., :3] = self._processing.color_adjust(batch[..., :3])
  File "C:\Users\choyt\faceswap\lib\training_data.py", line 522, in color_adjust
    batch = batch_convert_color(batch, "BGR2LAB")
  File "C:\Users\choyt\faceswap\lib\image.py", line 265, in batch_convert_color
    batch = batch.reshape((original_shape[0] * original_shape[1], *original_shape[2:]))
IndexError: tuple index out of range

============ System Information ============
encoding:            cp950
git_branch:          master
git_commits:         7024047 Merge branch 'staging'
gpu_cuda:            9.0
gpu_cudnn:           No global version found. Check Conda packages for Conda cuDNN
gpu_devices:         GPU_0: GeForce RTX 2060
gpu_devices_active:  GPU_0
gpu_driver:          442.19
gpu_vram:            GPU_0: 6144MB
os_machine:          AMD64
os_platform:         Windows-10-10.0.18362-SP0
os_release:          10
py_command:          C:\Users\choyt\faceswap\faceswap.py train -A D:/Program/Fake/Model A data -B D:/Program/Fake/Model B data -m D:/Program/Fake/Model -t original -bs 64 -it 1000000 -g 1 -s 100 -ss 25000 -ps 50 -L INFO -gui
py_conda_version:    conda 4.8.2
py_implementation:   CPython
py_version:          3.7.6
py_virtual_env:      True
sys_cores:           24
sys_processor:       AMD64 Family 23 Model 113 Stepping 0, AuthenticAMD
sys_ram:             Total: 16294MB, Available: 6549MB, Used: 9744MB, Free: 6549MB

=============== Pip Packages ===============
absl-py==0.9.0
astor==0.8.0
certifi==2019.11.28
cloudpickle==1.3.0
cycler==0.10.0
cytoolz==0.10.1
dask==2.10.1
decorator==4.4.1
fastcluster==1.1.26
ffmpy==0.2.2
gast==0.2.2
google-pasta==0.1.8
grpcio==1.16.1
h5py==2.9.0
imageio==2.6.1
imageio-ffmpeg==0.3.0
joblib==0.14.1
Keras==2.2.4
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
Markdown==3.1.1
matplotlib==3.1.3
mkl-fft==1.0.15
mkl-random==1.1.0
mkl-service==2.3.0
networkx==2.4
numpy==1.17.4
nvidia-ml-py3==7.352.1
olefile==0.46
opencv-python==4.1.2.30
opt-einsum==3.1.0
pathlib==1.0.1
Pillow==6.2.1
protobuf==3.11.3
psutil==5.6.7
pyparsing==2.4.6
pyreadline==2.1
python-dateutil==2.8.1
pytz==2019.3
PyWavelets==1.1.1
pywin32==227
PyYAML==5.3
scikit-image==0.16.2
scikit-learn==0.22.1
scipy==1.4.1
six==1.14.0
tensorboard==2.0.0
tensorflow==1.15.0
tensorflow-estimator==1.15.1
termcolor==1.1.0
toolz==0.10.0
toposort==1.5
tornado==6.0.3
tqdm==4.42.1
Werkzeug==0.16.1
wincertstore==0.2
wrapt==1.11.2

============== Conda Packages ==============
# packages in environment at C:\Users\choyt\MiniConda3\envs\faceswap:
#
# Name                    Version                   Build  Channel
_tflow_select             2.1.0                       gpu  
absl-py 0.9.0 py37_0
astor 0.8.0 py37_0
blas 1.0 mkl
ca-certificates 2020.1.1 0
certifi 2019.11.28 py37_0
cloudpickle 1.3.0 py_0
cudatoolkit 10.0.130 0
cudnn 7.6.5 cuda10.0_0
cycler 0.10.0 py37_0
cytoolz 0.10.1 py37he774522_0
dask-core 2.10.1 py_0
decorator 4.4.1 py_0
fastcluster 1.1.26 py37he350917_0 conda-forge ffmpeg 4.2 h6538335_0 conda-forge ffmpy 0.2.2 pypi_0 pypi freetype 2.9.1 ha9979f8_1
gast 0.2.2 py37_0
git 2.23.0 h6bb4b03_0
google-pasta 0.1.8 py_0
grpcio 1.16.1 py37h351948d_1
h5py 2.9.0 py37h5e291fa_0
hdf5 1.10.4 h7ebc959_0
icc_rt 2019.0.0 h0cc432a_1
icu 58.2 ha66f8fd_1
imageio 2.6.1 py37_0
imageio-ffmpeg 0.3.0 py_0 conda-forge intel-openmp 2020.0 166
joblib 0.14.1 py_0
jpeg 9b hb83a4c4_2
keras 2.2.4 0
keras-applications 1.0.8 py_0
keras-base 2.2.4 py37_0
keras-preprocessing 1.1.0 py_1
kiwisolver 1.1.0 py37ha925a31_0
libpng 1.6.37 h2a8f88b_0
libprotobuf 3.11.3 h7bd577a_0
libtiff 4.1.0 h56a325e_0
markdown 3.1.1 py37_0
matplotlib 3.1.1 py37hc8f65d3_0
matplotlib-base 3.1.3 py37h64f37c6_0
mkl 2020.0 166
mkl-service 2.3.0 py37hb782905_0
mkl_fft 1.0.15 py37h14836fe_0
mkl_random 1.1.0 py37h675688f_0
networkx 2.4 py_0
numpy 1.17.4 py37h4320e6b_0
numpy-base 1.17.4 py37hc3f5095_0
nvidia-ml-py3 7.352.1 pypi_0 pypi olefile 0.46 py37_0
opencv-python 4.1.2.30 pypi_0 pypi openssl 1.1.1d he774522_4
opt_einsum 3.1.0 py_0
pathlib 1.0.1 py37_1
pillow 6.2.1 py37hdc69c19_0
pip 20.0.2 py37_1
protobuf 3.11.3 py37h33f27b4_0
psutil 5.6.7 py37he774522_0
pyparsing 2.4.6 py_0
pyqt 5.9.2 py37h6538335_2
pyreadline 2.1 py37_1
python 3.7.6 h60c2a47_2
python-dateutil 2.8.1 py_0
pytz 2019.3 py_0
pywavelets 1.1.1 py37he774522_0
pywin32 227 py37he774522_1
pyyaml 5.3 py37he774522_0
qt 5.9.7 vc14h73c81de_0
scikit-image 0.16.2 py37h47e9c7a_0
scikit-learn 0.22.1 py37h6288b17_0
scipy 1.4.1 py37h9439919_0
setuptools 45.2.0 py37_0
sip 4.19.8 py37h6538335_0
six 1.14.0 py37_0
sqlite 3.31.1 he774522_0
tensorboard 2.0.0 pyhb38c66f_1
tensorflow 1.15.0 gpu_py37hc3743a6_0
tensorflow-base 1.15.0 gpu_py37h1afeea4_0
tensorflow-estimator 1.15.1 pyh2649769_0
tensorflow-gpu 1.15.0 h0d30ee6_0
termcolor 1.1.0 py37_1
tk 8.6.8 hfa6e2cd_0
toolz 0.10.0 py_0
toposort 1.5 py_3 conda-forge tornado 6.0.3 py37he774522_3
tqdm 4.42.1 py_0
vc 14.1 h0510ff6_4
vs2015_runtime 14.16.27012 hf0eaf9b_1
werkzeug 0.16.1 py_0
wheel 0.34.2 py37_0
wincertstore 0.2 py37_0
wrapt 1.11.2 py37he774522_0
xz 5.2.4 h2fa13f4_4
yaml 0.1.7 hc54c509_2
zlib 1.2.11 h62dcd97_3
zstd 1.3.7 h508b16e_0 =============== State File ================= { "name": "original", "sessions": { "1": { "timestamp": 1581943994.930083, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 1, "config": { "learning_rate": 5e-05 } } }, "lowest_avg_loss": { "a": 0.31185588240623474, "b": 0.18341457843780518 }, "iterations": 1, "inputs": { "face_in:0": [ 64, 64, 3 ] }, "training_size": 256, "config": { "coverage": 85.0, "mask_type": null, "mask_blur_kernel": 3, "mask_threshold": 4, "learn_mask": false, "icnr_init": false, "conv_aware_init": false, "subpixel_upscaling": false, "reflect_padding": false, "penalized_mask_loss": true, "loss_function": "mae", "learning_rate": 5e-05, "lowmem": false } } ================= Configs ================== --------- .faceswap --------- backend: nvidia --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 [scaling.sharpen] method: unsharp_mask amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: True [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 scalefactor: 0.709 batch-size: 8 [detect.s3fd] confidence: 70 batch-size: 4 [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] coverage: 85.0 mask_type: none mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False icnr_init: False conv_aware_init: False subpixel_upscaling: False reflect_padding: False penalized_mask_loss: True loss_function: mae learning_rate: 5e-05 [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4
User avatar
torzdf
Posts: 2796
Joined: Fri Jul 12, 2019 12:53 am
Answers: 160
Has thanked: 142 times
Been thanked: 650 times

Re: It said unexpected crash and I dont know what to do Anyone can help me please??

Post by torzdf »

There is a problem with (at least 1) of your input images. Unfortunately there isn't enough information in the logs to know which side or which image, but you should make sure that all of your training images are the same size.

My word is final

Locked