Training always crash

If training is failing to start, and you are not receiving an error message telling you what to do, tell us about it here


Forum rules

Read the FAQs and search the forum before posting a new topic.

This forum is for reporting errors with the Training process. If you want to get tips, or better understand the Training process, then you should look in the Training Discussion forum.

Please mark any answers that fixed your problems so others can find the solutions.

Locked
User avatar
Brandon1J
Posts: 2
Joined: Sun Feb 23, 2020 9:45 am
Answers: 0

Training always crash

Post by Brandon1J »

Here's the crash report, let me know the reason plz

also, I selected using cpu, what should I do if I wanna change to gpu?

Code: Select all

02/23/2020 20:34:17 MainProcess     _training_0     _base           __init__                  DEBUG    training_opts: {'alignments': {'a': '/Users/holysaya/Documents/faceswap/B_face/alignments.fsa', 'b': '/Users/holysaya/Documents/faceswap/A_face/alignments.fsa'}, 'preview_scaling': 0.5, 'warp_to_landmarks': False, 'augment_color': True, 'no_flip': False, 'pingpong': False, 'snapshot_interval': 25000, 'training_size': 256, 'no_logs': False, 'coverage_ratio': 0.625, 'mask_type': None, 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'penalized_mask_loss': False}
02/23/2020 20:34:17 MainProcess     _training_0     _base           multiple_models_in_folder DEBUG    model_files: ['original_decoder_B.h5', 'original_decoder_A.h5', 'original_encoder.h5'], retval: False
02/23/2020 20:34:17 MainProcess     _training_0     original        add_networks              DEBUG    Adding networks
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Tensor("input_1:0", shape=(?, 8, 8, 512), dtype=float32), filters: 256, kernel_size: 3, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_8_0
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x14475d2b0>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("input_1:0", shape=(?, 8, 8, 512), dtype=float32), filters: 1024, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_8_0_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x14475d2b0>})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x14475d2b0>
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Tensor("upscale_8_0_pixelshuffler/Reshape_1:0", shape=(?, 16, 16, 256), dtype=float32), filters: 128, kernel_size: 3, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_16_0
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x14471ef60>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("upscale_8_0_pixelshuffler/Reshape_1:0", shape=(?, 16, 16, 256), dtype=float32), filters: 512, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_16_0_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x14471ef60>})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x14471ef60>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Tensor("upscale_16_0_pixelshuffler/Reshape_1:0", shape=(?, 32, 32, 128), dtype=float32), filters: 64, kernel_size: 3, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_32_0
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x14478aba8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("upscale_16_0_pixelshuffler/Reshape_1:0", shape=(?, 32, 32, 128), dtype=float32), filters: 256, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_32_0_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x14478aba8>})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x14478aba8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("upscale_32_0_pixelshuffler/Reshape_1:0", shape=(?, 64, 64, 64), dtype=float32), filters: 3, kernel_size: 5, strides: (1, 1), padding: same, kwargs: {'activation': 'sigmoid', 'name': 'face_out'})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x144799c88>
02/23/2020 20:34:17 MainProcess     _training_0     _base           add_network               DEBUG    network_type: 'decoder', side: 'a', network: '<keras.engine.training.Model object at 0x1447a0f98>', is_output: True
02/23/2020 20:34:17 MainProcess     _training_0     _base           name                      DEBUG    model name: 'original'
02/23/2020 20:34:17 MainProcess     _training_0     _base           add_network               DEBUG    name: 'decoder_a', filename: 'original_decoder_A.h5'
02/23/2020 20:34:17 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing NNMeta: (filename: '/Users/holysaya/Documents/faceswap/model/original_decoder_A.h5', network_type: 'decoder', side: 'a', network: <keras.engine.training.Model object at 0x1447a0f98>, is_output: True
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:186: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized NNMeta
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Tensor("input_2:0", shape=(?, 8, 8, 512), dtype=float32), filters: 256, kernel_size: 3, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_8_1
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x12cb760b8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("input_2:0", shape=(?, 8, 8, 512), dtype=float32), filters: 1024, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_8_1_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x12cb760b8>})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x12cb760b8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Tensor("upscale_8_1_pixelshuffler/Reshape_1:0", shape=(?, 16, 16, 256), dtype=float32), filters: 128, kernel_size: 3, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_16_1
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x1447c89e8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("upscale_8_1_pixelshuffler/Reshape_1:0", shape=(?, 16, 16, 256), dtype=float32), filters: 512, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_16_1_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x1447c89e8>})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x1447c89e8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Tensor("upscale_16_1_pixelshuffler/Reshape_1:0", shape=(?, 32, 32, 128), dtype=float32), filters: 64, kernel_size: 3, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_32_1
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x147724ac8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("upscale_16_1_pixelshuffler/Reshape_1:0", shape=(?, 32, 32, 128), dtype=float32), filters: 256, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_32_1_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x147724ac8>})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x147724ac8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("upscale_32_1_pixelshuffler/Reshape_1:0", shape=(?, 64, 64, 64), dtype=float32), filters: 3, kernel_size: 5, strides: (1, 1), padding: same, kwargs: {'activation': 'sigmoid', 'name': 'face_out'})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x144755ba8>
02/23/2020 20:34:17 MainProcess     _training_0     _base           add_network               DEBUG    network_type: 'decoder', side: 'b', network: '<keras.engine.training.Model object at 0x147737e80>', is_output: True
02/23/2020 20:34:17 MainProcess     _training_0     _base           name                      DEBUG    model name: 'original'
02/23/2020 20:34:17 MainProcess     _training_0     _base           add_network               DEBUG    name: 'decoder_b', filename: 'original_decoder_B.h5'
02/23/2020 20:34:17 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing NNMeta: (filename: '/Users/holysaya/Documents/faceswap/model/original_decoder_B.h5', network_type: 'decoder', side: 'b', network: <keras.engine.training.Model object at 0x147737e80>, is_output: True
02/23/2020 20:34:17 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized NNMeta
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv                      DEBUG    inp: Tensor("input_3:0", shape=(?, 64, 64, 3), dtype=float32), filters: 128, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: conv_64_0
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("input_3:0", shape=(?, 64, 64, 3), dtype=float32), filters: 128, kernel_size: 5, strides: 2, padding: same, kwargs: {'name': 'conv_64_0_conv2d'})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x147744710>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv                      DEBUG    inp: Tensor("conv_64_0_leakyrelu/LeakyRelu:0", shape=(?, 32, 32, 128), dtype=float32), filters: 256, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: conv_32_0
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("conv_64_0_leakyrelu/LeakyRelu:0", shape=(?, 32, 32, 128), dtype=float32), filters: 256, kernel_size: 5, strides: 2, padding: same, kwargs: {'name': 'conv_32_0_conv2d'})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x147755cf8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv                      DEBUG    inp: Tensor("conv_32_0_leakyrelu/LeakyRelu:0", shape=(?, 16, 16, 256), dtype=float32), filters: 512, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: conv_16_0
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("conv_32_0_leakyrelu/LeakyRelu:0", shape=(?, 16, 16, 256), dtype=float32), filters: 512, kernel_size: 5, strides: 2, padding: same, kwargs: {'name': 'conv_16_0_conv2d'})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x14a6a07b8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv                      DEBUG    inp: Tensor("conv_16_0_leakyrelu/LeakyRelu:0", shape=(?, 8, 8, 512), dtype=float32), filters: 1024, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: conv_8_0
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("conv_16_0_leakyrelu/LeakyRelu:0", shape=(?, 8, 8, 512), dtype=float32), filters: 1024, kernel_size: 5, strides: 2, padding: same, kwargs: {'name': 'conv_8_0_conv2d'})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x14a6a8ba8>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Tensor("reshape_1/Reshape:0", shape=(?, 4, 4, 1024), dtype=float32), filters: 512, kernel_size: 3, use_instance_norm: False, kwargs: {})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_4_0
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x14a6cc278>
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Tensor("reshape_1/Reshape:0", shape=(?, 4, 4, 1024), dtype=float32), filters: 2048, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_4_0_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x14a6cc278>})
02/23/2020 20:34:17 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x14a6cc278>
02/23/2020 20:34:17 MainProcess     _training_0     _base           add_network               DEBUG    network_type: 'encoder', side: 'None', network: '<keras.engine.training.Model object at 0x14a6dea58>', is_output: False
02/23/2020 20:34:17 MainProcess     _training_0     _base           name                      DEBUG    model name: 'original'
02/23/2020 20:34:17 MainProcess     _training_0     _base           add_network               DEBUG    name: 'encoder', filename: 'original_encoder.h5'
02/23/2020 20:34:17 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing NNMeta: (filename: '/Users/holysaya/Documents/faceswap/model/original_encoder.h5', network_type: 'encoder', side: 'None', network: <keras.engine.training.Model object at 0x14a6dea58>, is_output: False
02/23/2020 20:34:17 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized NNMeta
02/23/2020 20:34:17 MainProcess     _training_0     original        add_networks              DEBUG    Added networks
02/23/2020 20:34:17 MainProcess     _training_0     _base           load_models               DEBUG    Load model: (swapped: False)
02/23/2020 20:34:17 MainProcess     _training_0     _base           models_exist              DEBUG    Pre-existing models exist: True
02/23/2020 20:34:17 MainProcess     _training_0     _base           models_exist              DEBUG    Pre-existing models exist: True
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     module_wrapper  _tfmw_add_deprecation_warning DEBUG    From /Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead.\n
02/23/2020 20:34:17 MainProcess     _training_0     _base           map_models                DEBUG    Map models: (swapped: False)
02/23/2020 20:34:17 MainProcess     _training_0     _base           map_models                DEBUG    Mapped models: (models_map: {'a': {'decoder': '/Users/holysaya/Documents/faceswap/model/original_decoder_A.h5'}, 'b': {'decoder': '/Users/holysaya/Documents/faceswap/model/original_decoder_B.h5'}})
02/23/2020 20:34:17 MainProcess     _training_0     _base           load                      DEBUG    Loading model: '/Users/holysaya/Documents/faceswap/model/original_decoder_A.h5'
02/23/2020 20:34:18 MainProcess     _training_0     _base           convert_legacy_weights    INFO     Adding model topology to legacy weights file: '/Users/holysaya/Documents/faceswap/model/original_decoder_A.h5'
02/23/2020 20:34:18 MainProcess     _training_0     multithreading  run                       DEBUG    Error in thread (_training_0): Tensor("Placeholder:0", shape=(3, 3, 512, 1024), dtype=float32) must be from the same graph as Tensor("upscale_8_0_conv2d/kernel:0", shape=(3, 3, 512, 1024), dtype=float32_ref).
02/23/2020 20:34:18 MainProcess     MainThread      train           _monitor                  DEBUG    Thread error detected
02/23/2020 20:34:18 MainProcess     MainThread      train           _monitor                  DEBUG    Closed Monitor
02/23/2020 20:34:18 MainProcess     MainThread      train           _end_thread               DEBUG    Ending Training thread
02/23/2020 20:34:18 MainProcess     MainThread      train           _end_thread               CRITICAL Error caught! Exiting...
02/23/2020 20:34:18 MainProcess     MainThread      multithreading  join                      DEBUG    Joining Threads: '_training'
02/23/2020 20:34:18 MainProcess     MainThread      multithreading  join                      DEBUG    Joining Thread: '_training_0'
02/23/2020 20:34:18 MainProcess     MainThread      multithreading  join                      ERROR    Caught exception in thread: '_training_0'
Traceback (most recent call last):
  File "/Users/holysaya/Documents/faceswap/plugins/train/model/_base.py", line 836, in load
    network = load_model(self.filename, custom_objects=get_custom_objects())
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/engine/saving.py", line 419, in load_model
    model = _deserialize_model(f, custom_objects, compile)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/engine/saving.py", line 221, in _deserialize_model
    model_config = f['model_config']
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/utils/io_utils.py", line 302, in __getitem__
    raise ValueError('Cannot create group in read only mode.')
ValueError: Cannot create group in read only mode.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/Users/holysaya/Documents/faceswap/lib/cli.py", line 128, in execute_script
    process.process()
  File "/Users/holysaya/Documents/faceswap/scripts/train.py", line 159, in process
    self._end_thread(thread, err)
  File "/Users/holysaya/Documents/faceswap/scripts/train.py", line 199, in _end_thread
    thread.join()
  File "/Users/holysaya/Documents/faceswap/lib/multithreading.py", line 121, in join
    raise thread.err[1].with_traceback(thread.err[2])
  File "/Users/holysaya/Documents/faceswap/lib/multithreading.py", line 37, in run
    self._target(*self._args, **self._kwargs)
  File "/Users/holysaya/Documents/faceswap/scripts/train.py", line 224, in _training
    raise err
  File "/Users/holysaya/Documents/faceswap/scripts/train.py", line 212, in _training
    model = self._load_model()
  File "/Users/holysaya/Documents/faceswap/scripts/train.py", line 253, in _load_model
    predict=False)
  File "/Users/holysaya/Documents/faceswap/plugins/train/model/original.py", line 25, in __init__
    super().__init__(*args, **kwargs)
  File "/Users/holysaya/Documents/faceswap/plugins/train/model/_base.py", line 126, in __init__
    self.build()
  File "/Users/holysaya/Documents/faceswap/plugins/train/model/_base.py", line 245, in build
    self.load_models(swapped=False)
  File "/Users/holysaya/Documents/faceswap/plugins/train/model/_base.py", line 457, in load_models
    is_loaded = network.load(fullpath=model_mapping[network.side][network.type])
  File "/Users/holysaya/Documents/faceswap/plugins/train/model/_base.py", line 839, in load
    self.convert_legacy_weights()
  File "/Users/holysaya/Documents/faceswap/plugins/train/model/_base.py", line 865, in convert_legacy_weights
    self.network.load_weights(self.filename)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 1166, in load_weights
    f, self.layers, reshape=reshape)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/engine/saving.py", line 1058, in load_weights_from_hdf5_group
    K.batch_set_value(weight_value_tuples)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2465, in batch_set_value
    assign_op = x.assign(assign_placeholder)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/tensorflow_core/python/ops/variables.py", line 2067, in assign
    self._variable, value, use_locking=use_locking, name=name)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/tensorflow_core/python/ops/state_ops.py", line 227, in assign
    validate_shape=validate_shape)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/tensorflow_core/python/ops/gen_state_ops.py", line 66, in assign
    use_locking=use_locking, name=name)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/tensorflow_core/python/framework/op_def_library.py", line 367, in _apply_op_helper
    g = ops._get_graph_from_inputs(_Flatten(keywords.values()))
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py", line 5979, in _get_graph_from_inputs
    _assert_same_graph(original_graph_element, graph_element)
  File "/Users/holysaya/anaconda3/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py", line 5914, in _assert_same_graph
    (item, original_item))
ValueError: Tensor("Placeholder:0", shape=(3, 3, 512, 1024), dtype=float32) must be from the same graph as Tensor("upscale_8_0_conv2d/kernel:0", shape=(3, 3, 512, 1024), dtype=float32_ref).

============ System Information ============
encoding:            UTF-8
git_branch:          Not Found
git_commits:         Not Found
gpu_cuda:            Unsupported OS. Check Conda packages for Conda Cuda
gpu_cudnn:           Unsupported OS. Check Conda packages for Conda cuDNN
gpu_devices:         
gpu_devices_active:
gpu_driver: 0 gpu_vram:
os_machine: x86_64 os_platform: Darwin-18.6.0-x86_64-i386-64bit os_release: 18.6.0 py_command: faceswap.py train -A /Users/holysaya/Documents/faceswap/B_face -B /Users/holysaya/Documents/faceswap/A_face -m /Users/holysaya/Documents/faceswap/model -p py_conda_version: conda 4.8.2 py_implementation: CPython py_version: 3.6.10 py_virtual_env: False sys_cores: 8 sys_processor: i386 sys_ram: Total: 16384MB, Available: 6987MB, Used: 16314MB, Free: 28MB =============== Pip Packages =============== absl-py==0.9.0 alabaster==0.7.10 anaconda-client==1.6.5 anaconda-navigator==1.6.9 anaconda-project==0.8.0 appdirs==1.4.3 appnope==0.1.0 appscript==1.0.1 asn1crypto==0.22.0 astor==0.8.1 astroid==1.5.3 astropy==2.0.2 Babel==2.5.0 backports.shutil-get-terminal-size==1.0.0 beautifulsoup4==4.6.0 bitarray==0.8.1 bkcharts==0.2 blaze==0.11.3 bleach==2.0.0 bokeh==0.12.10 boto==2.48.0 Bottleneck==1.2.1 cachetools==4.0.0 certifi==2019.11.28 cffi==1.10.0 chardet==3.0.4 click==6.7 cloudpickle==0.4.0 clyent==1.2.2 cmake==3.16.3 colorama==0.3.9 conda==4.8.2 conda-build==3.0.27 conda-package-handling==1.6.0 conda-verify==2.0.0 contextlib2==0.5.5 cryptography==2.8 cycler==0.10.0 Cython==0.26.1 cytoolz==0.8.2 dask==0.15.3 datashape==0.5.4 decorator==4.1.2 distlib==0.3.0 distributed==1.19.1 dlib==19.9.0 docutils==0.14 entrypoints==0.2.3 et-xmlfile==1.0.1 fastcache==1.0.2 fastcluster==1.1.26 ffmpy==0.2.2 filelock==3.0.12 Flask==0.12.2 Flask-Cors==3.0.3 gast==0.2.2 gevent==1.2.2 glob2==0.5 gmpy2==2.0.8 google-auth==1.11.2 google-auth-oauthlib==0.4.1 google-pasta==0.1.8 greenlet==0.4.12 grpcio==1.27.2 h5py==2.9.0 heapdict==1.0.0 html5lib==0.999999999 idna==2.9 imageio==2.6.1 imageio-ffmpeg==0.4.0 imagesize==0.7.1 importlib-metadata==1.5.0 importlib-resources==1.0.2 ipykernel==4.6.1 ipython==6.1.0 ipython-genutils==0.2.0 ipywidgets==7.0.0 isort==4.2.15 itsdangerous==0.24 jdcal==1.3 jedi==0.10.2 Jinja2==2.9.6 jsonschema==2.6.0 jupyter-client==5.1.0 jupyter-console==5.2.0 jupyter-core==4.3.0 jupyterlab==0.27.0 jupyterlab-launcher==0.4.0 Keras==2.2.4 Keras-Applications==1.0.8 Keras-Preprocessing==1.1.0 kiwisolver==1.1.0 lazy-object-proxy==1.3.1 llvmlite==0.20.0 locket==0.2.0 lxml==4.1.0 Markdown==3.2.1 MarkupSafe==1.0 matplotlib==3.1.1 mccabe==0.6.1 mistune==0.7.4 mpmath==0.19 msgpack-python==0.4.8 multipledispatch==0.4.9 navigator-updater==0.1.0 nbconvert==5.3.1 nbformat==4.4.0 networkx==2.0 nltk==3.2.4 nose==1.3.7 notebook==5.0.0 numba==0.35.0+6.gaa35fb1 numexpr==2.6.2 numpy==1.17.4 numpydoc==0.7.0 nvidia-ml-py3==7.352.1 oauthlib==3.1.0 odo==0.5.1 olefile==0.44 opencv-python==4.1.2.30 openpyxl==2.4.8 opt-einsum==3.1.0 packaging==16.8 pandas==0.20.3 pandocfilters==1.4.2 partd==0.3.8 path.py==10.3.1 pathlib==1.0.1 pathlib2==2.3.0 patsy==0.4.1 pep8==1.7.0 pexpect==4.2.1 pickleshare==0.7.4 Pillow==6.2.1 pkginfo==1.4.1 ply==3.10 prompt-toolkit==1.0.15 protobuf==3.11.3 psutil==5.4.0 ptyprocess==0.5.2 py==1.4.34 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycodestyle==2.3.1 pycosat==0.6.3 pycparser==2.18 pycrypto==2.6.1 pycurl==7.43.0.2 pyflakes==1.6.0 Pygments==2.2.0 pylint==1.7.4 pynvx==1.0.0 pyodbc==4.0.17 pyOpenSSL==17.2.0 pyparsing==2.2.0 PySocks==1.6.7 pytest==3.2.1 python-dateutil==2.6.1 pytz==2017.2 PyWavelets==0.5.2 PyYAML==3.12 pyzmq==16.0.2 QtAwesome==0.4.4 qtconsole==4.3.1 QtPy==1.3.1 requests==2.23.0 requests-oauthlib==1.3.0 rope==0.10.5 rsa==4.0 ruamel-yaml==0.11.14 scikit-image==0.13.0 scikit-learn==0.19.1 scipy==1.4.1 seaborn==0.8 simplegeneric==0.8.1 singledispatch==3.4.0.3 six==1.14.0 snowballstemmer==1.2.1 sortedcollections==0.5.3 sortedcontainers==1.5.7 Sphinx==1.6.3 sphinxcontrib-websupport==1.0.1 spyder==3.2.4 SQLAlchemy==1.1.13 statsmodels==0.8.0 sympy==1.1.1 tables==3.4.2 tblib==1.3.2 tensorboard==1.15.0 tensorflow==1.15.0 tensorflow-estimator==1.15.1 tensorflow-gpu==1.1.0 termcolor==1.1.0 terminado==0.6 testpath==0.3.1 toolz==0.8.2 toposort==1.5 tornado==4.5.2 tqdm==4.42.1 traitlets==4.3.2 typing==3.6.2 unicodecsv==0.14.1 urllib3==1.25.8 virtualenv==20.0.5 wcwidth==0.1.7 webencodings==0.5.1 Werkzeug==1.0.0 widgetsnbextension==3.0.2 wrapt==1.12.0 xlrd==1.1.0 XlsxWriter==1.0.2 xlwings==0.11.4 xlwt==1.2.0 zict==0.1.3 zipp==3.0.0 ============== Conda Packages ============== # packages in environment at /Users/holysaya/anaconda3: # # Name Version Build Channel _ipyw_jlab_nb_ext_conf 0.1.0 py36h2fc01ae_0
absl-py 0.9.0 pypi_0 pypi alabaster 0.7.10 py36h174008c_0
anaconda 5.0.1 py36h6e48e2d_1
anaconda-client 1.6.5 py36h04cfe59_0
anaconda-navigator 1.6.9 py36ha31b149_0
anaconda-project 0.8.0 py36h99320b2_0
appdirs 1.4.3 pypi_0 pypi appnope 0.1.0 py36hf537a9a_0
appscript 1.0.1 py36h9e71e49_1
asn1crypto 0.22.0 py36hb705621_1
astor 0.8.1 pypi_0 pypi astroid 1.5.3 py36h1333018_0
astropy 2.0.2 py36hf79c81d_4
babel 2.5.0 py36h9f161ff_0
backports 1.0 py36ha3c1827_1
backports.shutil_get_terminal_size 1.0.0 py36hd7a2ee4_2
beautifulsoup4 4.6.0 py36h72d3c9f_1
bitarray 0.8.1 py36h20fa61d_0
bkcharts 0.2 py36h073222e_0
blaze 0.11.3 py36h02e7a37_0
bleach 2.0.0 py36h8fcea71_0
bokeh 0.12.10 py36hfd5be35_0
boto 2.48.0 py36hdbc59ac_1
bottleneck 1.2.1 py36hbd380ad_0
bzip2 1.0.6 h92991f9_1
ca-certificates 2017.08.26 ha1e5d58_0
cachetools 4.0.0 pypi_0 pypi certifi 2019.11.28 pypi_0 pypi cffi 1.10.0 py36h880867e_1
chardet 3.0.4 pypi_0 pypi click 6.7 py36hec950be_0
cloudpickle 0.4.0 py36h13b7e56_0
clyent 1.2.2 py36hae3ad88_0
cmake 3.16.3 pypi_0 pypi colorama 0.3.9 py36hd29a30c_0
conda 4.8.2 py36_0
conda-build 3.0.27 py36hb78d8cd_0
conda-env 2.6.0 1
conda-package-handling 1.6.0 py36h1de35cc_0
conda-verify 2.0.0 py36he837df3_0
contextlib2 0.5.5 py36hd66e5e7_0
cryptography 2.8 py36ha12b0ac_0
curl 7.64.0 ha441bb4_2
cycler 0.10.0 py36hfc81398_0
cython 0.26.1 py36hd51f8eb_0
cytoolz 0.8.2 py36h290905f_0
dask 0.15.3 py36hc3ad2d6_0
dask-core 0.15.3 py36hc0be6b7_0
datashape 0.5.4 py36hfb22df8_0
dbus 1.10.22 h50d9ad6_0
decorator 4.1.2 py36h69a1b52_0
distlib 0.3.0 pypi_0 pypi distributed 1.19.1 py36h4ae75d2_0
dlib 19.9.0 pypi_0 pypi docutils 0.14 py36hbfde631_0
entrypoints 0.2.3 py36hd81d71f_2
et_xmlfile 1.0.1 py36h1315bdc_0
expat 2.2.6 h0a44026_0
fastcache 1.0.2 py36h8606a76_0
fastcluster 1.1.26 pypi_0 pypi ffmpy 0.2.2 pypi_0 pypi filelock 3.0.12 pypi_0 pypi flask 0.12.2 py36h5658096_0
flask-cors 3.0.3 py36h7387b97_0
freetype 2.8 h143eb01_0
gast 0.2.2 pypi_0 pypi get_terminal_size 1.0.0 h7520d66_0
gettext 0.19.8.1 hb0f4f8b_2
gevent 1.2.2 py36ha70b9d6_0
glib 2.53.6 ha08cb78_1
glob2 0.5 py36h12393a9_0
gmp 6.1.2 h4a9834d_0
gmpy2 2.0.8 py36h7ef02cb_1
google-auth 1.11.2 pypi_0 pypi google-auth-oauthlib 0.4.1 pypi_0 pypi google-pasta 0.1.8 pypi_0 pypi greenlet 0.4.12 py36hf09ba7b_0
grpcio 1.27.2 pypi_0 pypi h5py 2.10.0 pypi_0 pypi hdf5 1.10.1 h6090a45_0
heapdict 1.0.0 py36h27a9ac6_0
html5lib 0.999999999 py36h79312fd_0
icu 58.2 hea21ae5_0
idna 2.9 pypi_0 pypi imageio 2.6.1 pypi_0 pypi imageio-ffmpeg 0.4.0 pypi_0 pypi imagesize 0.7.1 py36h3495948_0
importlib-metadata 1.5.0 pypi_0 pypi importlib-resources 1.0.2 pypi_0 pypi intel-openmp 2018.0.0 h68bdfb3_7
ipykernel 4.6.1 py36h3208c25_0
ipython 6.1.0 py36hf612aae_1
ipython_genutils 0.2.0 py36h241746c_0
ipywidgets 7.0.0 py36h24d3910_0
isort 4.2.15 py36hceb2a01_0
itsdangerous 0.24 py36h49fbb8d_1
jbig 2.1 h4d881f8_0
jdcal 1.3 py36h1986823_0
jedi 0.10.2 py36h6325097_0
jinja2 2.9.6 py36hde4beb4_1
jpeg 9b haccd157_1
jsonschema 2.6.0 py36hb385e00_0
jupyter 1.0.0 py36h598a6cc_0
jupyter_client 5.1.0 py36hf6c435f_0
jupyter_console 5.2.0 py36hccf5b1c_1
jupyter_core 4.3.0 py36h93810fe_0
jupyterlab 0.27.0 py36hd3092eb_2
jupyterlab_launcher 0.4.0 py36h93e02e9_0
keras 2.2.4 pypi_0 pypi keras-applications 1.0.8 pypi_0 pypi keras-preprocessing 1.1.0 pypi_0 pypi kiwisolver 1.1.0 pypi_0 pypi krb5 1.16.4 hddcf347_0
lazy-object-proxy 1.3.1 py36h2fbbe47_0
libcurl 7.64.0 h051b688_2
libcxx 4.0.1 h579ed51_0
libcxxabi 4.0.1 hebd6815_0
libedit 3.1.20181209 hb402a30_0
libffi 3.2.1 hd939716_3
libgfortran 3.0.1 h93005f0_2
libiconv 1.15 h99df5da_5
libpng 1.6.32 hce72d48_2
libsodium 1.0.13 hba5e272_2
libssh2 1.8.0 h1218725_2
libtiff 4.0.8 h8cd0352_9
libxml2 2.9.4 hbd0960b_5
libxslt 1.1.29 h95a2935_5
llvmlite 0.20.0 py36_0
locket 0.2.0 py36hca03003_1
lxml 4.1.0 py36h8179fc0_0
lzo 2.10 hb6b8854_1
markdown 3.2.1 pypi_0 pypi markupsafe 1.0 py36h3a1e703_1
matplotlib 3.1.1 pypi_0 pypi mccabe 0.6.1 py36hdaeb55d_0
mistune 0.7.4 py36hccd6237_0
mkl 2018.0.0 h5ef208c_6
mkl-service 1.1.2 py36h7ea6df4_4
mpc 1.0.3 hc455b36_4
mpfr 3.1.5 h7fa3772_1
mpmath 0.19 py36h9185fea_2
msgpack-python 0.4.8 py36h46767b2_0
multipledispatch 0.4.9 py36hc5f92b5_0
navigator-updater 0.1.0 py36h7aee5fb_0
nbconvert 5.3.1 py36h810822e_0
nbformat 4.4.0 py36h827af21_0
ncurses 6.1 h0a44026_1
networkx 2.0 py36hefccab9_0
nltk 3.2.4 py36h27d1ea0_0
nose 1.3.7 py36h73fae2b_2
notebook 5.0.0 py36h462289e_2
numba 0.35.0 np113py36_6
numexpr 2.6.2 py36h0f4f1da_1
numpy 1.18.1 pypi_0 pypi numpydoc 0.7.0 py36he54d08e_0
nvidia-ml-py3 7.352.1 pypi_0 pypi oauthlib 3.1.0 pypi_0 pypi odo 0.5.1 py36hc1af34a_0
olefile 0.44 py36ha08bf50_0
opencv-python 4.1.2.30 pypi_0 pypi openpyxl 2.4.8 py36he899640_1
openssl 1.1.1d h1de35cc_4
opt-einsum 3.1.0 pypi_0 pypi packaging 16.8 py36he5e8135_0
pandas 0.20.3 py36hd6655d8_2
pandoc 1.19.2.1 ha5e8f32_1
pandocfilters 1.4.2 py36h3b0b094_1
partd 0.3.8 py36hf5c4cb8_0
path.py 10.3.1 py36hd33c240_0
pathlib 1.0.1 pypi_0 pypi pathlib2 2.3.0 py36h877a6d8_0
patsy 0.4.1 py36ha1b3fa5_0
pcre 8.41 h29eefc5_0
pep8 1.7.0 py36hc268eb1_0
pexpect 4.2.1 py36h3eac828_0
pickleshare 0.7.4 py36hf512f8e_0
pillow 6.2.1 pypi_0 pypi pip 20.0.2 pypi_0 pypi pkginfo 1.4.1 py36h25bf955_0
ply 3.10 py36h10e714e_0
prompt_toolkit 1.0.15 py36haeda067_0
protobuf 3.11.3 pypi_0 pypi psutil 5.4.0 py36ha052210_0
ptyprocess 0.5.2 py36he6521c3_0
py 1.4.34 py36hecf431b_1
pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pycodestyle 2.3.1 py36h83e8646_0
pycosat 0.6.3 py36h1de35cc_0
pycparser 2.18 py36h724b2fc_1
pycrypto 2.6.1 py36h72f2894_1
pycurl 7.43.0.2 py36ha12b0ac_0
pyflakes 1.6.0 py36hea45e83_0
pygments 2.2.0 py36h240cd3f_0
pylint 1.7.4 py36hdee9077_0
pynvx 1.0.0 pypi_0 pypi pyodbc 4.0.17 py36h5478161_0
pyopenssl 17.2.0 py36h5d7bf08_0
pyparsing 2.2.0 py36hb281f35_0
pyqt 5.6.0 py36he5c6137_6
pysocks 1.6.7 py36hfa33cec_1
pytables 3.4.2 py36hfbd7ab0_2
pytest 3.2.1 py36h9963153_1
python 3.6.10 h359304d_0
python-dateutil 2.6.1 py36h86d2abb_1
python.app 2 py36h7fe2238_6
pytz 2017.2 py36h2e7dfbc_1
pywavelets 0.5.2 py36h2710a04_0
pyyaml 3.12 py36h2ba1e63_1
pyzmq 16.0.2 py36h087ffad_2
qt 5.6.2 h9975529_14
qtawesome 0.4.4 py36h468c6fb_0
qtconsole 4.3.1 py36hd96c0ff_0
qtpy 1.3.1 py36h16bb863_0
readline 7.0 h1de35cc_5
requests 2.23.0 pypi_0 pypi requests-oauthlib 1.3.0 pypi_0 pypi rhash 1.3.8 ha12b0ac_0
rope 0.10.5 py36h5764ad1_0
rsa 4.0 pypi_0 pypi ruamel_yaml 0.11.14 py36h9d7ade0_2
scikit-image 0.13.0 py36h398857d_1
scikit-learn 0.19.1 py36hffbff8c_0
scipy 1.4.1 pypi_0 pypi seaborn 0.8.0 py36h74df97e_0
setuptools 45.2.0 pypi_0 pypi simplegeneric 0.8.1 py36he5b5b09_0
singledispatch 3.4.0.3 py36hf20db9d_0
sip 4.18.1 py36h2824476_2
six 1.14.0 pypi_0 pypi snowballstemmer 1.2.1 py36h6c7b616_0
sortedcollections 0.5.3 py36he9c3ed6_0
sortedcontainers 1.5.7 py36ha982688_0
sphinx 1.6.3 py36hcd1b3e7_0
sphinxcontrib 1.0 py36h9364dc8_1
sphinxcontrib-websupport 1.0.1 py36h92f4a7a_1
spyder 3.2.4 py36h908396f_0
sqlalchemy 1.1.13 py36h156b851_0
sqlite 3.31.1 ha441bb4_0
statsmodels 0.8.0 py36h9c68fc9_0
sympy 1.1.1 py36h7f3cf04_0
tblib 1.3.2 py36hda67792_0
tensorboard 1.15.0 pypi_0 pypi tensorflow 1.15.0 pypi_0 pypi tensorflow-estimator 1.15.1 pypi_0 pypi tensorflow-gpu 1.1.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi terminado 0.6 py36h656782e_0
testpath 0.3.1 py36h625a49b_0
tk 8.6.8 ha441bb4_0
toolz 0.8.2 py36h7b95164_0
toposort 1.5 pypi_0 pypi tornado 4.5.2 py36h468dda9_0
tqdm 4.42.1 py_0
traitlets 4.3.2 py36h65bd3ce_0
typing 3.6.2 py36haa2d9ef_0
unicodecsv 0.14.1 py36he531d66_0
unixodbc 2.3.4 h4cb4dde_1
urllib3 1.25.8 pypi_0 pypi virtualenv 20.0.5 pypi_0 pypi wcwidth 0.1.7 py36h8c6ec74_0
webencodings 0.5.1 py36h3b9701d_1
werkzeug 1.0.0 pypi_0 pypi wheel 0.34.2 pypi_0 pypi widgetsnbextension 3.0.2 py36h91f43ea_1
wrapt 1.12.0 pypi_0 pypi xlrd 1.1.0 py36h336f4a2_1
xlsxwriter 1.0.2 py36h3736301_0
xlwings 0.11.4 py36hc75f156_0
xlwt 1.2.0 py36h5ad1178_0
xz 5.2.4 h1de35cc_4
yaml 0.1.7 hff548bb_1
zeromq 4.2.2 h131e0f7_1
zict 0.1.3 py36h71da714_0
zipp 3.0.0 pypi_0 pypi zlib 1.2.11 h60db283_1 ================= Configs ================== --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.match_hist] threshold: 99.0 [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [scaling.sharpen] method: unsharp_mask amount: 150 radius: 0.3 threshold: 5.0 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- .faceswap --------- backend: cpu --------- extract.ini --------- [global] allow_growth: False [detect.mtcnn] minsize: 20 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 scalefactor: 0.709 batch-size: 8 [detect.cv2_dnn] confidence: 50 [detect.s3fd] confidence: 70 batch-size: 4 [align.fan] batch-size: 12 [mask.unet_dfl] batch-size: 8 [mask.vgg_obstructed] batch-size: 2 [mask.vgg_clear] batch-size: 6 --------- train.ini --------- [global] coverage: 68.75 mask_type: none mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False icnr_init: False conv_aware_init: False subpixel_upscaling: False reflect_padding: False penalized_mask_loss: True loss_function: mae learning_rate: 5e-05 [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.dlight] features: best details: good output_size: 256 [model.villain] lowmem: False [model.original] lowmem: False [model.dfl_h128] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4
User avatar
torzdf
Posts: 2796
Joined: Fri Jul 12, 2019 12:53 am
Answers: 160
Has thanked: 142 times
Been thanked: 650 times

Re: Training always crash

Post by torzdf »

You should install Faceswap into a virtual environment. Most likely you have some kind of system conflict going on here.

To change to GPU mode, the easiest way is to create a new Virtual Environment and run setup.py inside the new environment, selecting the version of Faceswap you wish to use when prompted

My word is final

User avatar
Brandon1J
Posts: 2
Joined: Sun Feb 23, 2020 9:45 am
Answers: 0

Re: Training always crash

Post by Brandon1J »

torzdf wrote: Sun Feb 23, 2020 12:59 pm

You should install Faceswap into a virtual environment. Most likely you have some kind of system conflict going on here.

To change to GPU mode, the easiest way is to create a new Virtual Environment and run setup.py inside the new environment, selecting the version of Faceswap you wish to use when prompted

Thanks for your reply. I'm using MacOS but most of the tutorials I've seen are for Windows, so I probably made some mistakes .

I always set up a virtual environment before I run Faceswap, by using these command: virtualenv faceswap_env/ but I can see this is not install, So can I ask how to install Faceswap into a virtual environment?

User avatar
torzdf
Posts: 2796
Joined: Fri Jul 12, 2019 12:53 am
Answers: 160
Has thanked: 142 times
Been thanked: 650 times

Re: Training always crash

Post by torzdf »

It may be a little outdated, but the guide on github (https://github.com/deepfakes/faceswap/b ... tall-guide) whilst for Windows and Linux is pretty much the same for macOS.

You need to make sure you also have XQuartz installed too.

My word is final

Locked