ERROR RuntimeError: Unable to get link info (free block size is zero?)

If training is failing to start, and you are not receiving an error message telling you what to do, tell us about it here


Forum rules

Read the FAQs and search the forum before posting a new topic.

This forum is for reporting errors with the Training process. If you want to get tips, or better understand the Training process, then you should look in the Training Discussion forum.

Please mark any answers that fixed your problems so others can find the solutions.

Locked
User avatar
ehjeh
Posts: 1
Joined: Tue May 26, 2020 2:03 am
Answers: 0

ERROR RuntimeError: Unable to get link info (free block size is zero?)

Post by ehjeh »

Code: Select all

05/25/2020 21:54:01 MainProcess     _training_0     _base           calculate_coverage_ratio  DEBUG    Final coverage_ratio: 0.6875
05/25/2020 21:54:01 MainProcess     _training_0     _base           __init__                  DEBUG    training_opts: {'alignments': {'a': 'C:\\Users\\ARG\\Desktop\\nathan\\extracted\\alignments.fsa', 'b': 'C:\\Users\\ARG\\Desktop\\nathan\\extracted-nathan\\alignments.fsa'}, 'preview_scaling': 0.5, 'warp_to_landmarks': False, 'augment_color': True, 'no_flip': False, 'pingpong': False, 'snapshot_interval': 25000, 'training_size': 256, 'no_logs': False, 'coverage_ratio': 0.6875, 'mask_type': None, 'mask_blur_kernel': 3, 'mask_threshold': 4, 'learn_mask': False, 'penalized_mask_loss': False}
05/25/2020 21:54:01 MainProcess     _training_0     _base           multiple_models_in_folder DEBUG    model_files: ['original_decoder_A.h5', 'original_decoder_B.h5', 'original_encoder.h5'], retval: False
05/25/2020 21:54:01 MainProcess     _training_0     original        add_networks              DEBUG    Adding networks
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: input_1 Placeholder FLOAT32(<tile.Value SymbolicDim UINT64()>, 8, 8, 512), filters: 256, kernel_size: 3, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_(<tile.Value SymbolicDim UINT64()>, 8, 8, 512)_0
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A48B4A08>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: input_1 Placeholder FLOAT32(<tile.Value SymbolicDim UINT64()>, 8, 8, 512), filters: 1024, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_(<tile.Value SymbolicDim UINT64()>, 8, 8, 512)_0_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x00000205A48B4A08>})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x00000205A48B4A08>
05/25/2020 21:54:01 MainProcess     _training_0     library         _logger_callback          INFO     Opening device "opencl_amd_ellesmere.0"
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 16, 16, 256), filters: 128, kernel_size: 3, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_(<tile.Value FloorDiv FLOAT64()>, 16, 16, 256)_0
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A49ED888>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 16, 16, 256), filters: 512, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_(<tile.Value FloorDiv FLOAT64()>, 16, 16, 256)_0_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x00000205A49ED888>})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x00000205A49ED888>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 32, 32, 128), filters: 64, kernel_size: 3, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_(<tile.Value FloorDiv FLOAT64()>, 32, 32, 128)_0
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A45D6248>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 32, 32, 128), filters: 256, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_(<tile.Value FloorDiv FLOAT64()>, 32, 32, 128)_0_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x00000205A45D6248>})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x00000205A45D6248>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 64, 64, 64), filters: 3, kernel_size: 5, strides: (1, 1), padding: same, kwargs: {'activation': 'sigmoid', 'name': 'face_out'})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A45DCB08>
05/25/2020 21:54:01 MainProcess     _training_0     _base           add_network               DEBUG    network_type: 'decoder', side: 'a', network: '<keras.engine.training.Model object at 0x00000205A45E8108>', is_output: True
05/25/2020 21:54:01 MainProcess     _training_0     _base           name                      DEBUG    model name: 'original'
05/25/2020 21:54:01 MainProcess     _training_0     _base           add_network               DEBUG    name: 'decoder_a', filename: 'original_decoder_A.h5'
05/25/2020 21:54:01 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing NNMeta: (filename: 'C:\Users\ARG\Desktop\nathan\take3\original_decoder_A.h5', network_type: 'decoder', side: 'a', network: <keras.engine.training.Model object at 0x00000205A45E8108>, is_output: True
05/25/2020 21:54:01 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized NNMeta
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: input_2 Placeholder FLOAT32(<tile.Value SymbolicDim UINT64()>, 8, 8, 512), filters: 256, kernel_size: 3, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_(<tile.Value SymbolicDim UINT64()>, 8, 8, 512)_1
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A45E8488>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: input_2 Placeholder FLOAT32(<tile.Value SymbolicDim UINT64()>, 8, 8, 512), filters: 1024, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_(<tile.Value SymbolicDim UINT64()>, 8, 8, 512)_1_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x00000205A45E8488>})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x00000205A45E8488>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 16, 16, 256), filters: 128, kernel_size: 3, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_(<tile.Value FloorDiv FLOAT64()>, 16, 16, 256)_1
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A4651F48>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 16, 16, 256), filters: 512, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_(<tile.Value FloorDiv FLOAT64()>, 16, 16, 256)_1_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x00000205A4651F48>})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x00000205A4651F48>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 32, 32, 128), filters: 64, kernel_size: 3, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_(<tile.Value FloorDiv FLOAT64()>, 32, 32, 128)_1
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A465FB08>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 32, 32, 128), filters: 256, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_(<tile.Value FloorDiv FLOAT64()>, 32, 32, 128)_1_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x00000205A465FB08>})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x00000205A465FB08>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Reshape FLOAT32(<tile.Value FloorDiv FLOAT64()>, 64, 64, 64), filters: 3, kernel_size: 5, strides: (1, 1), padding: same, kwargs: {'activation': 'sigmoid', 'name': 'face_out'})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A466A588>
05/25/2020 21:54:01 MainProcess     _training_0     _base           add_network               DEBUG    network_type: 'decoder', side: 'b', network: '<keras.engine.training.Model object at 0x00000205A4672708>', is_output: True
05/25/2020 21:54:01 MainProcess     _training_0     _base           name                      DEBUG    model name: 'original'
05/25/2020 21:54:01 MainProcess     _training_0     _base           add_network               DEBUG    name: 'decoder_b', filename: 'original_decoder_B.h5'
05/25/2020 21:54:01 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing NNMeta: (filename: 'C:\Users\ARG\Desktop\nathan\take3\original_decoder_B.h5', network_type: 'decoder', side: 'b', network: <keras.engine.training.Model object at 0x00000205A4672708>, is_output: True
05/25/2020 21:54:01 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized NNMeta
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv                      DEBUG    inp: input_3 Placeholder FLOAT32(<tile.Value SymbolicDim UINT64()>, 64, 64, 3), filters: 128, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: conv_(<tile.Value SymbolicDim UINT64()>, 64, 64, 3)_0
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: input_3 Placeholder FLOAT32(<tile.Value SymbolicDim UINT64()>, 64, 64, 3), filters: 128, kernel_size: 5, strides: 2, padding: same, kwargs: {'name': 'conv_(<tile.Value SymbolicDim UINT64()>, 64, 64, 3)_0_conv2d'})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A4672D08>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv                      DEBUG    inp: Relu FLOAT32(<tile.Value SymbolicDim UINT64()>, 32, 32, 128), filters: 256, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: conv_(<tile.Value SymbolicDim UINT64()>, 32, 32, 128)_0
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Relu FLOAT32(<tile.Value SymbolicDim UINT64()>, 32, 32, 128), filters: 256, kernel_size: 5, strides: 2, padding: same, kwargs: {'name': 'conv_(<tile.Value SymbolicDim UINT64()>, 32, 32, 128)_0_conv2d'})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A468D3C8>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv                      DEBUG    inp: Relu FLOAT32(<tile.Value SymbolicDim UINT64()>, 16, 16, 256), filters: 512, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: conv_(<tile.Value SymbolicDim UINT64()>, 16, 16, 256)_0
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Relu FLOAT32(<tile.Value SymbolicDim UINT64()>, 16, 16, 256), filters: 512, kernel_size: 5, strides: 2, padding: same, kwargs: {'name': 'conv_(<tile.Value SymbolicDim UINT64()>, 16, 16, 256)_0_conv2d'})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A4693C48>
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv                      DEBUG    inp: Relu FLOAT32(<tile.Value SymbolicDim UINT64()>, 8, 8, 512), filters: 1024, kernel_size: 5, strides: 2, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: conv_(<tile.Value SymbolicDim UINT64()>, 8, 8, 512)_0
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Relu FLOAT32(<tile.Value SymbolicDim UINT64()>, 8, 8, 512), filters: 1024, kernel_size: 5, strides: 2, padding: same, kwargs: {'name': 'conv_(<tile.Value SymbolicDim UINT64()>, 8, 8, 512)_0_conv2d'})
05/25/2020 21:54:01 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A46A3808>
05/25/2020 21:54:02 MainProcess     _training_0     nn_blocks       upscale                   DEBUG    inp: Reshape FLOAT32(<tile.Value SymbolicDim UINT64()>, 4, 4, 1024), filters: 512, kernel_size: 3, use_instance_norm: False, kwargs: {})
05/25/2020 21:54:02 MainProcess     _training_0     nn_blocks       get_name                  DEBUG    Generating block name: upscale_(<tile.Value SymbolicDim UINT64()>, 4, 4, 1024)_0
05/25/2020 21:54:02 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Set default kernel_initializer to: <keras.initializers.VarianceScaling object at 0x00000205A46B49C8>
05/25/2020 21:54:02 MainProcess     _training_0     nn_blocks       conv2d                    DEBUG    inp: Reshape FLOAT32(<tile.Value SymbolicDim UINT64()>, 4, 4, 1024), filters: 2048, kernel_size: 3, strides: (1, 1), padding: same, kwargs: {'name': 'upscale_(<tile.Value SymbolicDim UINT64()>, 4, 4, 1024)_0_conv2d', 'kernel_initializer': <keras.initializers.VarianceScaling object at 0x00000205A46B49C8>})
05/25/2020 21:54:02 MainProcess     _training_0     nn_blocks       set_default_initializer   DEBUG    Using model specified initializer: <keras.initializers.VarianceScaling object at 0x00000205A46B49C8>
05/25/2020 21:54:02 MainProcess     _training_0     _base           add_network               DEBUG    network_type: 'encoder', side: 'None', network: '<keras.engine.training.Model object at 0x00000205A469AB08>', is_output: False
05/25/2020 21:54:02 MainProcess     _training_0     _base           name                      DEBUG    model name: 'original'
05/25/2020 21:54:02 MainProcess     _training_0     _base           add_network               DEBUG    name: 'encoder', filename: 'original_encoder.h5'
05/25/2020 21:54:02 MainProcess     _training_0     _base           __init__                  DEBUG    Initializing NNMeta: (filename: 'C:\Users\ARG\Desktop\nathan\take3\original_encoder.h5', network_type: 'encoder', side: 'None', network: <keras.engine.training.Model object at 0x00000205A469AB08>, is_output: False
05/25/2020 21:54:02 MainProcess     _training_0     _base           __init__                  DEBUG    Initialized NNMeta
05/25/2020 21:54:02 MainProcess     _training_0     original        add_networks              DEBUG    Added networks
05/25/2020 21:54:02 MainProcess     _training_0     _base           load_models               DEBUG    Load model: (swapped: False)
05/25/2020 21:54:02 MainProcess     _training_0     _base           models_exist              DEBUG    Pre-existing models exist: True
05/25/2020 21:54:02 MainProcess     _training_0     _base           models_exist              DEBUG    Pre-existing models exist: True
05/25/2020 21:54:02 MainProcess     _training_0     _base           map_models                DEBUG    Map models: (swapped: False)
05/25/2020 21:54:02 MainProcess     _training_0     _base           map_models                DEBUG    Mapped models: (models_map: {'a': {'decoder': 'C:\\Users\\ARG\\Desktop\\nathan\\take3\\original_decoder_A.h5'}, 'b': {'decoder': 'C:\\Users\\ARG\\Desktop\\nathan\\take3\\original_decoder_B.h5'}})
05/25/2020 21:54:02 MainProcess     _training_0     _base           load                      DEBUG    Loading model: 'C:\Users\ARG\Desktop\nathan\take3\original_decoder_A.h5'
05/25/2020 21:54:02 MainProcess     _training_0     library         _logger_callback          INFO     Opening device "opencl_amd_ellesmere.0"
05/25/2020 21:54:02 MainProcess     _training_0     _base           load                      DEBUG    Loading model: 'C:\Users\ARG\Desktop\nathan\take3\original_decoder_B.h5'
05/25/2020 21:54:02 MainProcess     _training_0     _base           load                      DEBUG    Loading model: 'C:\Users\ARG\Desktop\nathan\take3\original_encoder.h5'
05/25/2020 21:54:03 MainProcess     _training_0     multithreading  run                       DEBUG    Error in thread (_training_0): Unable to get link info (free block size is zero?)
05/25/2020 21:54:04 MainProcess     MainThread      train           _monitor                  DEBUG    Thread error detected
05/25/2020 21:54:04 MainProcess     MainThread      train           _monitor                  DEBUG    Closed Monitor
05/25/2020 21:54:04 MainProcess     MainThread      train           _end_thread               DEBUG    Ending Training thread
05/25/2020 21:54:04 MainProcess     MainThread      train           _end_thread               CRITICAL Error caught! Exiting...
05/25/2020 21:54:04 MainProcess     MainThread      multithreading  join                      DEBUG    Joining Threads: '_training'
05/25/2020 21:54:04 MainProcess     MainThread      multithreading  join                      DEBUG    Joining Thread: '_training_0'
05/25/2020 21:54:04 MainProcess     MainThread      multithreading  join                      ERROR    Caught exception in thread: '_training_0'
05/25/2020 21:54:04 MainProcess     MainThread      plaidml_tools   initialize                DEBUG    PlaidML already initialized
05/25/2020 21:54:04 MainProcess     MainThread      plaidml_tools   get_supported_devices     DEBUG    [<plaidml._DeviceConfig object at 0x00000205A48D3188>]
05/25/2020 21:54:04 MainProcess     MainThread      plaidml_tools   get_all_devices           DEBUG    Experimental Devices: [<plaidml._DeviceConfig object at 0x00000205A491BF48>]
05/25/2020 21:54:04 MainProcess     MainThread      plaidml_tools   get_all_devices           DEBUG    [<plaidml._DeviceConfig object at 0x00000205A491BF48>, <plaidml._DeviceConfig object at 0x00000205A48D3188>]
05/25/2020 21:54:04 MainProcess     MainThread      plaidml_tools   __init__                  DEBUG    Initialized: PlaidMLStats
05/25/2020 21:54:04 MainProcess     MainThread      plaidml_tools   supported_indices         DEBUG    [1]
05/25/2020 21:54:04 MainProcess     MainThread      plaidml_tools   supported_indices         DEBUG    [1]
Traceback (most recent call last):
  File "C:\Users\ARG\faceswap\lib\cli.py", line 129, in execute_script
    process.process()
  File "C:\Users\ARG\faceswap\scripts\train.py", line 159, in process
    self._end_thread(thread, err)
  File "C:\Users\ARG\faceswap\scripts\train.py", line 199, in _end_thread
    thread.join()
  File "C:\Users\ARG\faceswap\lib\multithreading.py", line 121, in join
    raise thread.err[1].with_traceback(thread.err[2])
  File "C:\Users\ARG\faceswap\lib\multithreading.py", line 37, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Users\ARG\faceswap\scripts\train.py", line 224, in _training
    raise err
  File "C:\Users\ARG\faceswap\scripts\train.py", line 212, in _training
    model = self._load_model()
  File "C:\Users\ARG\faceswap\scripts\train.py", line 253, in _load_model
    predict=False)
  File "C:\Users\ARG\faceswap\plugins\train\model\original.py", line 25, in __init__
    super().__init__(*args, **kwargs)
  File "C:\Users\ARG\faceswap\plugins\train\model\_base.py", line 126, in __init__
    self.build()
  File "C:\Users\ARG\faceswap\plugins\train\model\_base.py", line 245, in build
    self.load_models(swapped=False)
  File "C:\Users\ARG\faceswap\plugins\train\model\_base.py", line 455, in load_models
    is_loaded = network.load()
  File "C:\Users\ARG\faceswap\plugins\train\model\_base.py", line 836, in load
    network = load_model(self.filename, custom_objects=get_custom_objects())
  File "C:\Users\ARG\MiniConda3\envs\faceswap\lib\site-packages\keras\engine\saving.py", line 419, in load_model
    model = _deserialize_model(f, custom_objects, compile)
  File "C:\Users\ARG\MiniConda3\envs\faceswap\lib\site-packages\keras\engine\saving.py", line 228, in _deserialize_model
    if 'keras_version' in model_weights_group:
  File "C:\Users\ARG\MiniConda3\envs\faceswap\lib\site-packages\keras\utils\io_utils.py", line 343, in __contains__
    return (key in self.data) or (key in self.data.attrs)
  File "h5py\_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
  File "h5py\_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
  File "C:\Users\ARG\MiniConda3\envs\faceswap\lib\site-packages\h5py\_hl\group.py", line 413, in __contains__
    return self._e(name) in self.id
  File "h5py\h5g.pyx", line 461, in h5py.h5g.GroupID.__contains__
  File "h5py\h5g.pyx", line 462, in h5py.h5g.GroupID.__contains__
  File "h5py\_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
  File "h5py\_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
  File "h5py\h5g.pyx", line 531, in h5py.h5g._path_valid
  File "h5py\_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
  File "h5py\_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
  File "h5py\h5l.pyx", line 212, in h5py.h5l.LinkProxy.exists
RuntimeError: Unable to get link info (free block size is zero?)

============ System Information ============
encoding:            cp1252
git_branch:          master
git_commits:         ba41a9c bugfix: dlight model change "mask_type" to "learn_mask" in decoders
gpu_cuda:            No global version found. Check Conda packages for Conda Cuda
gpu_cudnn:           No global version found. Check Conda packages for Conda cuDNN
gpu_devices:         GPU_0: Advanced Micro Devices, Inc. - Ellesmere (experimental), GPU_1: Advanced Micro Devices, Inc. - Ellesmere (supported)
gpu_devices_active:  GPU_0, GPU_1
gpu_driver:          ['2841.19', '2841.19']
gpu_vram:            GPU_0: 4096MB, GPU_1: 4096MB
os_machine:          AMD64
os_platform:         Windows-10-10.0.18362-SP0
os_release:          10
py_command:          C:\Users\ARG\faceswap\faceswap.py train -A C:/Users/ARG/Desktop/nathan/extracted -B C:/Users/ARG/Desktop/nathan/extracted-nathan -m C:/Users/ARG/Desktop/nathan/take3 -t original -bs 64 -it 1000000 -s 100 -ss 25000 -ps 50 -L INFO -gui
py_conda_version:    conda 4.8.0
py_implementation:   CPython
py_version:          3.7.5
py_virtual_env:      True
sys_cores:           8
sys_processor:       Intel64 Family 6 Model 158 Stepping 12, GenuineIntel
sys_ram:             Total: 49090MB, Available: 37607MB, Used: 11482MB, Free: 37607MB

=============== Pip Packages ===============
absl-py==0.8.1
astor==0.8.0
certifi==2019.11.28
cffi==1.13.2
cloudpickle==1.2.2
cycler==0.10.0
cytoolz==0.10.1
dask==2.9.0
decorator==4.4.1
enum34==1.1.6
fastcluster==1.1.25
ffmpy==0.2.2
gast==0.2.2
google-pasta==0.1.8
grpcio==1.16.1
h5py==2.9.0
imageio==2.6.1
imageio-ffmpeg==0.3.0
joblib==0.14.1
Keras==2.2.4
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
Markdown==3.1.1
matplotlib==3.1.1
mkl-fft==1.0.15
mkl-random==1.1.0
mkl-service==2.3.0
networkx==2.4
numpy==1.17.4
nvidia-ml-py3==7.352.1
olefile==0.46
opencv-python==4.1.2.30
opt-einsum==3.1.0
pathlib==1.0.1
Pillow==6.2.1
plaidml==0.6.4
plaidml-keras==0.6.4
protobuf==3.11.2
psutil==5.6.7
pycparser==2.19
pyparsing==2.4.5
pyreadline==2.1
python-dateutil==2.8.1
pytz==2019.3
PyWavelets==1.1.1
pywin32==227
PyYAML==5.2
scikit-image==0.15.0
scikit-learn==0.22
scipy==1.3.2
six==1.13.0
tensorboard==2.0.0
tensorflow==1.15.0
tensorflow-estimator==1.15.1
termcolor==1.1.0
toolz==0.10.0
toposort==1.5
tornado==6.0.3
tqdm==4.40.2
Werkzeug==0.16.0
wincertstore==0.2
wrapt==1.11.2

============== Conda Packages ==============
# packages in environment at C:\Users\ARG\MiniConda3\envs\faceswap:
#
# Name                    Version                   Build  Channel
_tflow_select             2.3.0                       mkl  
absl-py 0.8.1 py37_0
astor 0.8.0 py37_0
blas 1.0 mkl
ca-certificates 2019.11.27 0
certifi 2019.11.28 py37_0
cffi 1.13.2 pypi_0 pypi cloudpickle 1.2.2 py_0
cycler 0.10.0 py37_0
cytoolz 0.10.1 py37he774522_0
dask-core 2.9.0 py_0
decorator 4.4.1 py_0
enum34 1.1.6 pypi_0 pypi fastcluster 1.1.25 py37he350917_1000 conda-forge ffmpeg 4.2 h6538335_0 conda-forge ffmpy 0.2.2 pypi_0 pypi freetype 2.9.1 ha9979f8_1
gast 0.2.2 py37_0
git 2.23.0 h6bb4b03_0
google-pasta 0.1.8 py_0
grpcio 1.16.1 py37h351948d_1
h5py 2.9.0 py37h5e291fa_0
hdf5 1.10.4 h7ebc959_0
icc_rt 2019.0.0 h0cc432a_1
icu 58.2 ha66f8fd_1
imageio 2.6.1 py37_0
imageio-ffmpeg 0.3.0 py_0 conda-forge intel-openmp 2019.4 245
joblib 0.14.1 py_0
jpeg 9b hb83a4c4_2
keras 2.2.4 0
keras-applications 1.0.8 py_0
keras-base 2.2.4 py37_0
keras-preprocessing 1.1.0 py_1
kiwisolver 1.1.0 py37ha925a31_0
libmklml 2019.0.5 0
libpng 1.6.37 h2a8f88b_0
libprotobuf 3.11.2 h7bd577a_0
libtiff 4.1.0 h56a325e_0
markdown 3.1.1 py37_0
matplotlib 3.1.1 py37hc8f65d3_0
mkl 2019.4 245
mkl-service 2.3.0 py37hb782905_0
mkl_fft 1.0.15 py37h14836fe_0
mkl_random 1.1.0 py37h675688f_0
networkx 2.4 py_0
numpy 1.17.4 py37h4320e6b_0
numpy-base 1.17.4 py37hc3f5095_0
nvidia-ml-py3 7.352.1 pypi_0 pypi olefile 0.46 py37_0
opencv-python 4.1.2.30 pypi_0 pypi openssl 1.1.1d he774522_3
opt_einsum 3.1.0 py_0
pathlib 1.0.1 py37_1
pillow 6.2.1 py37hdc69c19_0
pip 19.3.1 py37_0
plaidml 0.6.4 pypi_0 pypi plaidml-keras 0.6.4 pypi_0 pypi protobuf 3.11.2 py37h33f27b4_0
psutil 5.6.7 py37he774522_0
pycparser 2.19 pypi_0 pypi pyparsing 2.4.5 py_0
pyqt 5.9.2 py37h6538335_2
pyreadline 2.1 py37_1
python 3.7.5 h8c8aaf0_0
python-dateutil 2.8.1 py_0
pytz 2019.3 py_0
pywavelets 1.1.1 py37he774522_0
pywin32 227 py37he774522_0
pyyaml 5.2 py37he774522_0
qt 5.9.7 vc14h73c81de_0
scikit-image 0.15.0 py37ha925a31_0
scikit-learn 0.22 py37h6288b17_0
scipy 1.3.2 py37h29ff71c_0
setuptools 42.0.2 py37_0
sip 4.19.8 py37h6538335_0
six 1.13.0 py37_0
sqlite 3.30.1 he774522_0
tensorboard 2.0.0 pyhb38c66f_1
tensorflow 1.15.0 mkl_py37h3789bd0_0
tensorflow-base 1.15.0 mkl_py37h190a33d_0
tensorflow-estimator 1.15.1 pyh2649769_0
termcolor 1.1.0 py37_1
tk 8.6.8 hfa6e2cd_0
toolz 0.10.0 py_0
toposort 1.5 py_3 conda-forge tornado 6.0.3 py37he774522_0
tqdm 4.40.2 py_0
vc 14.1 h0510ff6_4
vs2015_runtime 14.16.27012 hf0eaf9b_1
werkzeug 0.16.0 py_0
wheel 0.33.6 py37_0
wincertstore 0.2 py37_0
wrapt 1.11.2 py37he774522_0
xz 5.2.4 h2fa13f4_4
yaml 0.1.7 hc54c509_2
zlib 1.2.11 h62dcd97_3
zstd 1.3.7 h508b16e_0 =============== State File ================= { "name": "original", "sessions": { "1": { "timestamp": 1585947161.7842915, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 32601, "config": { "learning_rate": 5e-05 } }, "2": { "timestamp": 1586021959.994682, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 1001, "config": { "learning_rate": 5e-05 } }, "3": { "timestamp": 1586187967.0968952, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 18001, "config": { "learning_rate": 5e-05 } }, "4": { "timestamp": 1586270178.786016, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 58901, "config": { "learning_rate": 5e-05 } }, "5": { "timestamp": 1586405021.1247506, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 36501, "config": { "learning_rate": 5e-05 } }, "6": { "timestamp": 1586490699.4909968, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 19184, "config": { "learning_rate": 5e-05 } }, "7": { "timestamp": 1586632998.9703188, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 51001, "config": { "learning_rate": 5e-05 } }, "8": { "timestamp": 1586815724.416049, "no_logs": false, "pingpong": false, "loss_names": { "a": [ "face_loss" ], "b": [ "face_loss" ] }, "batchsize": 64, "iterations": 36001, "config": { "learning_rate": 5e-05 } } }, "lowest_avg_loss": { "a": 0.02381170665845275, "b": 0.01903638871386647 }, "iterations": 253191, "inputs": { "face_in": [ 64, 64, 3 ] }, "training_size": 256, "config": { "coverage": 68.75, "mask_type": null, "mask_blur_kernel": 3, "mask_threshold": 4, "learn_mask": false, "icnr_init": false, "conv_aware_init": false, "subpixel_upscaling": false, "reflect_padding": false, "penalized_mask_loss": true, "loss_function": "mae", "learning_rate": 5e-05, "lowmem": false } } ================= Configs ================== --------- .faceswap --------- backend: amd --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [mask.mask_blend] type: normalized radius: 3.0 passes: 4 erosion: 0.0 [scaling.sharpen] method: unsharp_mask amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: False [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 scalefactor: 0.709 batch-size: 8 [detect.s3fd] confidence: 70 batch-size: 4 [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] coverage: 68.75 mask_type: none mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False icnr_init: False conv_aware_init: False subpixel_upscaling: False reflect_padding: False penalized_mask_loss: True loss_function: mae learning_rate: 5e-05 [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4
User avatar
torzdf
Posts: 2796
Joined: Fri Jul 12, 2019 12:53 am
Answers: 160
Has thanked: 142 times
Been thanked: 650 times

Re: ERROR RuntimeError: Unable to get link info (free block size is zero?)

Post by torzdf »

This looks like model corruption.

You should try to use the "Restore" Tool to reload from backup.

My word is final

Locked